热带气旋预报模式
计算机科学
数值天气预报
热带气旋
气象学
天气预报
航程(航空)
天气预报
模型输出统计
极端天气
钥匙(锁)
全球预报系统
机器学习
人工智能
气候变化
地理
材料科学
计算机安全
复合材料
生态学
生物
作者
Rémi Lam,Álvaro Sánchez‐González,Matthew Willson,Peter Wirnsberger,Meire Fortunato,Ferran Alet,Suman Ravuri,Timo Ewalds,Zach Eaton-Rosen,Weihua Hu,Alexander S. Rosengarten,Stephan Hoyer,George Holland,Oriol Vinyals,Jacklynn Stott,Alexander Pritzel,Shakir Mohamed,Peter Battaglia
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-12-22
卷期号:382 (6677): 1416-1421
被引量:175
标识
DOI:10.1126/science.adi2336
摘要
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI