Towards Privacy-Preserving and Practical Data Trading for Aggregate Statistic

采购 计算机科学 差别隐私 计算机安全 数据挖掘 业务 营销
作者
Fan Yang,Xiaofeng Liao,Xinyu Lei,Nankun Mu,Di Zhang
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 452-463 被引量:1
标识
DOI:10.1109/tsusc.2023.3331179
摘要

Data trading is an effective way for commercial companies to obtain massive personal data to develop their data-driven businesses. However, when data owners may want to sell their data without revealing privacy, data consumers also face the dilemma of high purchase costs due to purchasing too much invalid data. Therefore, there is an urgent need for a data trading scheme that can protect personal privacy and save expenses simultaneously. In this paper, we design a priv AC y-preserving and pra C tical aggr E gate S tati S tic trading scheme (named as ACCESS). Technically, we focus on the group-level pricing strategy to make ACCESS easier to implement. The differential privacy technique is applied to protect the data owners' privacy, and the sampling algorithm is adopted to reduce the data consumers' costs. Specifically, to provide a maximum tolerant privacy loss guarantee for the data owners, we design a decision algorithm to detect whether a conflict occurs between the consumer-specified accuracy level and the maximum tolerable privacy loss budget. Besides, to minimize the purchase cost for the data brokers, we develop a sampling-based aggregation method consisting of two sampling algorithms (called as BUSA and BKSA, respectively). BUSA enables reducing purchase costs with no additional background knowledge. Once the data broker knows the data boundary, BKSA can significantly reduce the amount of data that needs to be purchased, thereby the purchase cost is reduced. Rigorous theoretical analysis and extensive experiments (over four real-world and public datasets) further demonstrate the practicability of ACCESS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助小鹿斑比采纳,获得10
刚刚
QIQI发布了新的文献求助10
刚刚
刚刚
ding应助yunqian采纳,获得10
1秒前
哒哒哒完成签到,获得积分20
1秒前
fan完成签到 ,获得积分10
1秒前
911关闭了911文献求助
2秒前
3秒前
小五完成签到,获得积分10
4秒前
logan完成签到,获得积分10
4秒前
4秒前
4秒前
开心祯祯关注了科研通微信公众号
6秒前
7秒前
故意的成危完成签到,获得积分10
7秒前
8秒前
罗胖胖完成签到 ,获得积分10
8秒前
yangxin614发布了新的文献求助10
8秒前
上官若男应助想美事采纳,获得10
10秒前
生动初蓝完成签到,获得积分10
10秒前
10秒前
11秒前
NexusExplorer应助研友_ZeqRYZ采纳,获得10
11秒前
咋还发布了新的文献求助10
12秒前
李健应助笨笨翰采纳,获得10
12秒前
科小白发布了新的文献求助10
13秒前
777完成签到,获得积分10
13秒前
13秒前
hehe完成签到,获得积分10
15秒前
完美的天空完成签到,获得积分0
15秒前
Jasper应助大力的祥采纳,获得10
15秒前
Stanfuny完成签到,获得积分10
16秒前
18秒前
yangxin614完成签到,获得积分10
19秒前
19秒前
19秒前
Dr.完成签到 ,获得积分10
19秒前
21秒前
科研公主完成签到,获得积分10
23秒前
请叫我小阿欢完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245593
求助须知:如何正确求助?哪些是违规求助? 2889244
关于积分的说明 8257665
捐赠科研通 2557607
什么是DOI,文献DOI怎么找? 1386314
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626629