Towards Privacy-Preserving and Practical Data Trading for Aggregate Statistic

采购 计算机科学 差别隐私 计算机安全 数据挖掘 业务 营销
作者
Fan Yang,Xiaofeng Liao,Xinyu Lei,Nankun Mu,Di Zhang
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 452-463 被引量:1
标识
DOI:10.1109/tsusc.2023.3331179
摘要

Data trading is an effective way for commercial companies to obtain massive personal data to develop their data-driven businesses. However, when data owners may want to sell their data without revealing privacy, data consumers also face the dilemma of high purchase costs due to purchasing too much invalid data. Therefore, there is an urgent need for a data trading scheme that can protect personal privacy and save expenses simultaneously. In this paper, we design a priv AC y-preserving and pra C tical aggr E gate S tati S tic trading scheme (named as ACCESS). Technically, we focus on the group-level pricing strategy to make ACCESS easier to implement. The differential privacy technique is applied to protect the data owners' privacy, and the sampling algorithm is adopted to reduce the data consumers' costs. Specifically, to provide a maximum tolerant privacy loss guarantee for the data owners, we design a decision algorithm to detect whether a conflict occurs between the consumer-specified accuracy level and the maximum tolerable privacy loss budget. Besides, to minimize the purchase cost for the data brokers, we develop a sampling-based aggregation method consisting of two sampling algorithms (called as BUSA and BKSA, respectively). BUSA enables reducing purchase costs with no additional background knowledge. Once the data broker knows the data boundary, BKSA can significantly reduce the amount of data that needs to be purchased, thereby the purchase cost is reduced. Rigorous theoretical analysis and extensive experiments (over four real-world and public datasets) further demonstrate the practicability of ACCESS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄怀逸完成签到 ,获得积分10
刚刚
单薄的大白菜真实的钥匙完成签到,获得积分10
1秒前
八荒来犬发布了新的文献求助10
1秒前
无私雪碧发布了新的文献求助10
2秒前
呆萌黑猫完成签到,获得积分10
2秒前
3秒前
3秒前
归尘发布了新的文献求助20
3秒前
李泽完成签到,获得积分10
4秒前
冷艳的白莲完成签到,获得积分10
4秒前
风信子完成签到,获得积分10
4秒前
斯文败类应助啊啊啊啊采纳,获得10
4秒前
amberzyc应助阿巴阿巴采纳,获得10
5秒前
ChengYonghui完成签到,获得积分10
6秒前
飞雪完成签到,获得积分10
6秒前
7秒前
7秒前
liutg24完成签到,获得积分10
7秒前
dd发布了新的文献求助10
7秒前
精明尔曼完成签到,获得积分10
7秒前
8秒前
yirenli完成签到,获得积分10
8秒前
8秒前
hesongwen完成签到,获得积分10
9秒前
刘英丽发布了新的文献求助10
9秒前
逐暮完成签到,获得积分20
9秒前
9秒前
文献互助1完成签到,获得积分10
9秒前
Jasper应助廉不可采纳,获得10
10秒前
思源应助chrysan采纳,获得10
10秒前
领导范儿应助肖文泽采纳,获得10
10秒前
10秒前
256发布了新的文献求助10
10秒前
万能图书馆应助Amorfati采纳,获得10
11秒前
DT完成签到,获得积分10
11秒前
大肥子发布了新的文献求助10
11秒前
CodeCraft应助哈哈哈采纳,获得10
12秒前
煎饼果子完成签到,获得积分10
12秒前
八荒来犬完成签到,获得积分20
12秒前
nowss完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044