SwinWave-SR: Multi-scale lightweight underwater image super-resolution

计算机科学 水下 人工智能 卷积神经网络 联营 计算机视觉 计算机工程 海洋学 地质学
作者
Fayaz Ali Dharejo,Iyyakutti Iyappan Ganapathi,Muhammad Zawish,Basit Alawode,Moath Alathbah,Naoufel Werghi,Sajid Javed
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102127-102127 被引量:12
标识
DOI:10.1016/j.inffus.2023.102127
摘要

The resource-limited nature of underwater vision equipment leads to poor, otherwise low-resolution information affecting the downstream underwater robotics and ocean engineering tasks. Underwater Image Enhancement (UIE) methods have emerged, particularly Super-Resolution (SR), to tackle the aforementioned challenge by restoring the corresponding low-resolution image to a high-quality counterpart. Vision Transformers (ViTs) have recently been employed for SR tasks thanks to their superior performance over mainstream convolution neural networks. The success of ViTs is largely due to their self-attention mechanism; however, they may encounter challenges in dealing with severe and unpredictable degradation in underwater imaging. In contrast, Multi-scale ViTs (MViTs) variants such as the Swin transformers have overcome that challenge by preserving long-range dependencies over multi-scale feature hierarchies through evolving channel capacity. MViTs tend to induce spatial efficiency through classical down-sampling, such as average pooling over key/values, which results in an inevitable loss of high-frequency components. To address this lack, in the current work, we propose a novel algorithm, SwinWave-SR, for efficient and accurate multi-scale SR for underwater images. Our proposed algorithm is based on Swin transformer consisting of a wavelet block to restrict the information drop by downsampling in an invertible fashion. Consequently, the key components are preserved to assist self-attention learning while reducing its computational cost simultaneously. To further complement it, we explore a prominent compression regime, namely the Lottery Ticket Hypothesis (LTH), to discover a lightweight sub-network with competitive performance to its original model by reducing computational costs up to 70.44%. Overall, SwinWave-SR improves peak signal-to-noise ratio (PSNR) by 0.95 dB ∼ 2.23 dB compared to the state-of-the-art SwinIR while reducing the number of parameters by 29.56% and the calculation cost by 18.734%. Experimental results show that the proposed SwinWave-SR method outperforms the state-of-the-art SR methods on four benchmark underwater datasets and significantly improves PSNR and structural similarity index (SSIM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
guoguo完成签到,获得积分10
1秒前
Fu发布了新的文献求助10
1秒前
小李完成签到,获得积分10
1秒前
俊逸的篮球完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
欢呼又夏完成签到,获得积分20
2秒前
Hannah完成签到,获得积分10
3秒前
Khr1stINK发布了新的文献求助10
3秒前
hashtag完成签到,获得积分10
3秒前
misalia完成签到,获得积分10
3秒前
彭于晏应助Two-Capitals采纳,获得10
4秒前
4秒前
wanci应助秋天采纳,获得10
4秒前
老李完成签到,获得积分10
5秒前
Felix发布了新的文献求助10
5秒前
maoamo2024发布了新的文献求助10
5秒前
Wtony发布了新的文献求助10
6秒前
xyh361发布了新的文献求助10
6秒前
飞飞飞飞飞完成签到,获得积分10
6秒前
孤海未蓝发布了新的文献求助10
6秒前
CCC发布了新的文献求助10
6秒前
繁荣的从雪完成签到,获得积分10
7秒前
小闪光完成签到 ,获得积分10
7秒前
钱怀蝶完成签到,获得积分10
7秒前
7秒前
nininidoc完成签到,获得积分10
8秒前
乐乐发布了新的文献求助10
8秒前
8秒前
8秒前
舒适的雁风完成签到,获得积分10
8秒前
yue完成签到,获得积分10
8秒前
赘婿应助郭一采纳,获得30
8秒前
自由的中蓝完成签到 ,获得积分10
9秒前
一念初见完成签到,获得积分10
10秒前
gUssan完成签到,获得积分10
10秒前
腼腆的缘分完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
IEC 61800-3_2022_中文版 400
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3650713
求助须知:如何正确求助?哪些是违规求助? 3215237
关于积分的说明 9705057
捐赠科研通 2922965
什么是DOI,文献DOI怎么找? 1600853
邀请新用户注册赠送积分活动 753710
科研通“疑难数据库(出版商)”最低求助积分说明 732859