Temporal difference-guided network for hyperspectral image change detection

高光谱成像 计算机科学 模式识别(心理学) 块(置换群论) 卷积神经网络 人工智能 特征提取 变更检测 特征(语言学) 维数(图论) 图像(数学) 数学 语言学 哲学 几何学 纯数学
作者
Zhonghao Chen,Yuyang Wang,Hongmin Gao,Yao Ding,Qiqiang Zhong,Danfeng Hong,Bing Zhang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 6033-6059 被引量:24
标识
DOI:10.1080/01431161.2023.2258563
摘要

ABSTRACTRecently, the research area of hyperspectral (HS) image change detection (CD) is popular with convolutional neural networks (CNNs) based methods. However, conventional CNNs-based CD algorithms commonly achieve detection by comparing the deep features extracted from the bi-temporal images at decision level, which often fails to take full advantage of the features extracted by the network at different levels. Moreover, there are inevitably substantial redundant features located in non-varying regions in bi-temporal images, which considerably impedes the training efficiency of CNNs-based methods. To solve these two problems, we propose a temporal difference-guided HS image CD network, called TDGN Specifically, the rich spectral features will be extracted from the bi-temporal images hierarchically, and then the differences between the two images at different levels of the network will be yielded by the elaborated convolutional gated recurrent unit block in the spatial dimension. Furthermore, the differences from these different levels will be fused for the final detection. More significantly, to boost the efficiency of the backbone network for feature extraction, the obtained difference at each level is also leveraged to generate variation weights to guide the feature extraction at the next stage. Finally, the proposed TDGN can make full use of the temporal difference obtained by the network at different levels while this information is further employed to facilitate the attention and extraction of change features by the network. Extensive experiments, implemented on four well-known HS data sets, demonstrate that the proposed TDGN yields an average overall accuracy of 98.67%, 96.74%, 99.36%, and 96.81% on these data sets, respectively, acquiring promising detection performance compared to state-of-the-art methods. The codes of this work will be available at https://github.com/zhonghaochen/TDGN_Master for the sake of reproducibility.KEYWORDS: Hyperspectral (HS) imagechange detection (CD)convolutional neural networks (CNNs)convolutional gated recurrent unittemporal difference-guided AcknowledgementsWe would like to thank the Remote Sensing Laboratory, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, for providing the Farmland data set, the NPU for providing River data set, and the CiTIUS for providing the Hermiston data set.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported in part by the National Natural Science Foundation of China under Grant 62071168, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20211201, in part by the China Postdoctoral Science Foundation under Grant 2021M690885, and in part by the National Natural Science Foundation of China under Grant 52069014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的绿兰完成签到,获得积分10
刚刚
刚刚
悠然小灏完成签到,获得积分10
刚刚
田様应助华华采纳,获得10
刚刚
刚刚
小蘑菇应助Youth采纳,获得10
刚刚
1秒前
1秒前
笑笑完成签到,获得积分10
1秒前
西大研究生完成签到,获得积分10
1秒前
1秒前
1秒前
666发布了新的文献求助10
2秒前
小刘完成签到,获得积分10
2秒前
kawhi发布了新的文献求助10
2秒前
whogun应助A2992799620采纳,获得10
2秒前
zhong发布了新的文献求助10
3秒前
调研昵称发布了新的文献求助10
3秒前
一秒的剧情完成签到,获得积分10
3秒前
CC发布了新的文献求助10
4秒前
笑笑发布了新的文献求助10
4秒前
4秒前
悠然小灏发布了新的文献求助10
5秒前
5秒前
5秒前
FashionBoy应助崔鹏采纳,获得10
5秒前
grace发布了新的文献求助10
5秒前
tester_gater完成签到 ,获得积分10
5秒前
6秒前
高贵绿草完成签到,获得积分10
6秒前
6秒前
7秒前
犹豫汽车发布了新的文献求助10
8秒前
阿艺发布了新的文献求助20
8秒前
你爹完成签到,获得积分10
8秒前
xuxd发布了新的文献求助10
9秒前
heyheyjoy完成签到,获得积分10
10秒前
健康的大船完成签到,获得积分10
10秒前
老迟到的小蘑菇完成签到,获得积分10
11秒前
大方电脑发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540203
求助须知:如何正确求助?哪些是违规求助? 3117698
关于积分的说明 9332009
捐赠科研通 2815417
什么是DOI,文献DOI怎么找? 1547572
邀请新用户注册赠送积分活动 721047
科研通“疑难数据库(出版商)”最低求助积分说明 712419