Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers

医学 乳腺癌 接收机工作特性 逻辑回归 免疫组织化学 乳房磁振造影 内科学 曲妥珠单抗 乳房成像 相关性 肿瘤科 癌症 放射科 乳腺摄影术 几何学 数学
作者
Toulsie Ramtohul,Lounes Djerroudi,Émilie Lissavalid,Caroline Nhy,Louis Redon,Laura Ikni,Manel Djelouah,Gabrielle Journo,Emmanuelle Menet,Luc Cabel,Caroline Malhaire,A. Tardivon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:32
标识
DOI:10.1148/radiol.222646
摘要

Background Half of breast cancers exhibit low expression levels of human epidermal growth factor receptor 2 (HER2) and can be targeted by new antibody-drug conjugates. The imaging differences between HER2-zero (immunohistochemistry [IHC] score of 0), HER2-low (IHC score of 1+ or 2+ with negative findings at fluorescence in situ hybridization [FISH]), and HER2-positive (IHC score of 2+ with positive findings at FISH or IHC score of 3+) breast cancers were unknown. Purpose To assess whether multiparametric dynamic contrast-enhanced MRI-based radiomic features can help distinguish HER2 expressions in breast cancer. Materials and Methods This study included women with breast cancer who underwent MRI at two different centers between December 2020 and December 2022. Tumor segmentation and radiomic feature extraction were performed on T2-weighted and dynamic contrast-enhanced T1-weighted images. Unsupervised correlation analysis of reproducible features and least absolute shrinkage and selector operation were used for the selection of features to build a radiomics signature. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the radiomic signature. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions in both the training and prospectively acquired external data set. Results The training set included 208 patients from center 1 (mean age, 53 years ± 14 [SD]), and the external test set included 131 patients from center 2 (mean age, 54 years ± 13). In the external test data set, the radiomic signature achieved an AUC of 0.80 (95% CI: 0.71, 0.89) for distinguishing HER2-low and -positive tumors versus HER2-zero tumors and was a significant predictive factor for distinguishing these two groups (odds ratio = 7.6; 95% CI: 2.9, 19.8; P < .001). Among HER2-low or -positive breast cancers, histology type, associated nonmass enhancement, and multiple lesions at MRI had an AUC of 0.77 (95% CI: 0.68, 0.86) in the external test set for the prediction of HER2-positive versus HER2-low cancers. Conclusion The radiomic signature and tumor descriptors from multiparametric breast MRI may predict distinct HER2 expressions of breast cancers with therapeutic implications. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kataoka and Honda in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得20
刚刚
orixero应助科研通管家采纳,获得10
刚刚
啦啦啦发布了新的文献求助10
1秒前
qiu发布了新的文献求助10
2秒前
3秒前
项阑悦发布了新的文献求助10
4秒前
lsq108发布了新的文献求助10
4秒前
Ava应助大福采纳,获得10
5秒前
乐乐应助zzz采纳,获得10
6秒前
顾城浪子完成签到,获得积分10
9秒前
9秒前
香蕉以菱发布了新的文献求助10
10秒前
qiu完成签到,获得积分10
11秒前
项阑悦完成签到,获得积分10
11秒前
法克西瓜汁完成签到,获得积分10
11秒前
果果发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
小二郎应助啦啦啦采纳,获得10
13秒前
16秒前
大佬救救我完成签到,获得积分20
16秒前
柔弱以旋完成签到 ,获得积分10
17秒前
涂楚捷发布了新的文献求助10
17秒前
17秒前
18秒前
cly3397完成签到,获得积分10
19秒前
bkagyin应助surain采纳,获得10
20秒前
22秒前
cmuz完成签到 ,获得积分10
22秒前
23秒前
李明完成签到,获得积分10
23秒前
23秒前
26秒前
Ji发布了新的文献求助10
26秒前
嘟嘟呀是只小泰迪完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825