Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers

医学 乳腺癌 接收机工作特性 逻辑回归 免疫组织化学 乳房磁振造影 内科学 曲妥珠单抗 乳房成像 相关性 肿瘤科 癌症 放射科 乳腺摄影术 几何学 数学
作者
Toulsie Ramtohul,Lounes Djerroudi,Émilie Lissavalid,Caroline Nhy,Louis Redon,Laura Ikni,Manel Djelouah,Gabrielle Journo,Emmanuelle Menet,Luc Cabel,Caroline Malhaire,A. Tardivon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:47
标识
DOI:10.1148/radiol.222646
摘要

Background Half of breast cancers exhibit low expression levels of human epidermal growth factor receptor 2 (HER2) and can be targeted by new antibody-drug conjugates. The imaging differences between HER2-zero (immunohistochemistry [IHC] score of 0), HER2-low (IHC score of 1+ or 2+ with negative findings at fluorescence in situ hybridization [FISH]), and HER2-positive (IHC score of 2+ with positive findings at FISH or IHC score of 3+) breast cancers were unknown. Purpose To assess whether multiparametric dynamic contrast-enhanced MRI-based radiomic features can help distinguish HER2 expressions in breast cancer. Materials and Methods This study included women with breast cancer who underwent MRI at two different centers between December 2020 and December 2022. Tumor segmentation and radiomic feature extraction were performed on T2-weighted and dynamic contrast-enhanced T1-weighted images. Unsupervised correlation analysis of reproducible features and least absolute shrinkage and selector operation were used for the selection of features to build a radiomics signature. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the radiomic signature. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions in both the training and prospectively acquired external data set. Results The training set included 208 patients from center 1 (mean age, 53 years ± 14 [SD]), and the external test set included 131 patients from center 2 (mean age, 54 years ± 13). In the external test data set, the radiomic signature achieved an AUC of 0.80 (95% CI: 0.71, 0.89) for distinguishing HER2-low and -positive tumors versus HER2-zero tumors and was a significant predictive factor for distinguishing these two groups (odds ratio = 7.6; 95% CI: 2.9, 19.8; P < .001). Among HER2-low or -positive breast cancers, histology type, associated nonmass enhancement, and multiple lesions at MRI had an AUC of 0.77 (95% CI: 0.68, 0.86) in the external test set for the prediction of HER2-positive versus HER2-low cancers. Conclusion The radiomic signature and tumor descriptors from multiparametric breast MRI may predict distinct HER2 expressions of breast cancers with therapeutic implications. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kataoka and Honda in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyh6802发布了新的文献求助10
刚刚
冷静雅青发布了新的文献求助10
刚刚
CipherSage应助猪猪hero采纳,获得10
1秒前
领导范儿应助不凡采纳,获得30
1秒前
顾矜应助坚定的亦绿采纳,获得10
2秒前
2秒前
yu完成签到,获得积分10
2秒前
Chris完成签到,获得积分10
3秒前
cookie发布了新的文献求助10
4秒前
胖仔完成签到,获得积分10
4秒前
Chan0501完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
duxinyue发布了新的文献求助10
6秒前
汉堡转转转完成签到,获得积分10
7秒前
喵酱发布了新的文献求助30
7秒前
6666完成签到,获得积分10
7秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
8秒前
wjn完成签到,获得积分10
8秒前
9秒前
竹子完成签到,获得积分10
9秒前
MAKEYF完成签到 ,获得积分10
9秒前
10秒前
Owen应助猪猪hero采纳,获得10
10秒前
11秒前
CipherSage应助海棠yiyi采纳,获得50
12秒前
Khr1stINK发布了新的文献求助10
12秒前
12秒前
脑洞疼应助卡卡采纳,获得10
12秒前
12秒前
Rrr发布了新的文献求助10
13秒前
科研通AI5应助zmy采纳,获得10
14秒前
William鉴哲发布了新的文献求助10
14秒前
情怀应助只道寻常采纳,获得10
15秒前
15秒前
cyy完成签到,获得积分20
15秒前
orixero应助小庄采纳,获得10
16秒前
17秒前
侦察兵发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794