Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers

医学 乳腺癌 接收机工作特性 逻辑回归 免疫组织化学 乳房磁振造影 内科学 曲妥珠单抗 乳房成像 相关性 肿瘤科 癌症 放射科 乳腺摄影术 几何学 数学
作者
Toulsie Ramtohul,Lounes Djerroudi,Émilie Lissavalid,Caroline Nhy,Louis Redon,Laura Ikni,Manel Djelouah,Gabrielle Journo,Emmanuelle Menet,Luc Cabel,Caroline Malhaire,A. Tardivon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:74
标识
DOI:10.1148/radiol.222646
摘要

Background Half of breast cancers exhibit low expression levels of human epidermal growth factor receptor 2 (HER2) and can be targeted by new antibody-drug conjugates. The imaging differences between HER2-zero (immunohistochemistry [IHC] score of 0), HER2-low (IHC score of 1+ or 2+ with negative findings at fluorescence in situ hybridization [FISH]), and HER2-positive (IHC score of 2+ with positive findings at FISH or IHC score of 3+) breast cancers were unknown. Purpose To assess whether multiparametric dynamic contrast-enhanced MRI-based radiomic features can help distinguish HER2 expressions in breast cancer. Materials and Methods This study included women with breast cancer who underwent MRI at two different centers between December 2020 and December 2022. Tumor segmentation and radiomic feature extraction were performed on T2-weighted and dynamic contrast-enhanced T1-weighted images. Unsupervised correlation analysis of reproducible features and least absolute shrinkage and selector operation were used for the selection of features to build a radiomics signature. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the radiomic signature. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions in both the training and prospectively acquired external data set. Results The training set included 208 patients from center 1 (mean age, 53 years ± 14 [SD]), and the external test set included 131 patients from center 2 (mean age, 54 years ± 13). In the external test data set, the radiomic signature achieved an AUC of 0.80 (95% CI: 0.71, 0.89) for distinguishing HER2-low and -positive tumors versus HER2-zero tumors and was a significant predictive factor for distinguishing these two groups (odds ratio = 7.6; 95% CI: 2.9, 19.8; P < .001). Among HER2-low or -positive breast cancers, histology type, associated nonmass enhancement, and multiple lesions at MRI had an AUC of 0.77 (95% CI: 0.68, 0.86) in the external test set for the prediction of HER2-positive versus HER2-low cancers. Conclusion The radiomic signature and tumor descriptors from multiparametric breast MRI may predict distinct HER2 expressions of breast cancers with therapeutic implications. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kataoka and Honda in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
追寻听云应助科研通管家采纳,获得10
刚刚
刚刚
做的出来发布了新的文献求助10
2秒前
橡皮鸭队长完成签到,获得积分10
2秒前
2秒前
2秒前
大方安白发布了新的文献求助10
3秒前
liii发布了新的文献求助30
3秒前
星辰发布了新的文献求助30
6秒前
风清扬应助粥里采纳,获得30
7秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
7秒前
upupup发布了新的文献求助10
7秒前
纯真小笼包完成签到 ,获得积分10
8秒前
8秒前
BLCER发布了新的文献求助10
8秒前
8秒前
Jackie完成签到,获得积分10
10秒前
脑洞疼应助做的出来采纳,获得10
11秒前
小余同学发布了新的文献求助10
13秒前
刘佳慧发布了新的文献求助10
13秒前
善学以致用应助pppyy采纳,获得10
13秒前
15秒前
15秒前
大方安白完成签到,获得积分10
15秒前
英姑应助敏敏9813采纳,获得10
16秒前
16秒前
可爱的函函应助upupup采纳,获得10
17秒前
热情的土豆完成签到 ,获得积分10
17秒前
ChenYX完成签到,获得积分10
18秒前
徐上进发布了新的文献求助10
19秒前
可爱的函函应助你找谁哇采纳,获得10
19秒前
20秒前
爆米花应助风语过采纳,获得10
20秒前
20秒前
freq完成签到 ,获得积分10
21秒前
ChenYX发布了新的文献求助10
21秒前
momo完成签到 ,获得积分10
24秒前
SpineLY发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352