Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions

预言 稳健性(进化) 计算机科学 变压器 数据挖掘 人工智能 卷积神经网络 机器学习 可靠性工程 工程类 生物化学 化学 电压 电气工程 基因
作者
Yuan Li,Jingwei Li,Huanjie Wang,Chengbao Liu,Jie Tan
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:242: 109748-109748 被引量:9
标识
DOI:10.1016/j.ress.2023.109748
摘要

Remaining useful life (RUL) prediction is essential in enhancing the safety and reliability of rotating machinery. Deep learning techniques have been extensively researched and demonstrated promising results in RUL prediction tasks. But most existing models are designed for machinery equipment in a specific condition. In this case, a novel prediction method, knowledge-enhanced convolutional Transformer ensemble model (KE-CTEM), is proposed in this study. First, a feature extraction neural network (FENN) is introduced to extract features and transfer the working conditions information of existing datasets as knowledge to downstream RUL prediction tasks. Then, a convolutional Transformer model is leveraged to capture the input data degradation patterns and predict RUL values. Finally, knowledge-enhanced strategy and ensemble strategy are proposed to enhance the robustness of the model and improve the prediction accuracy. To verify the practicality and effectiveness of the proposed method, run-to-failure data of bearings from PRONOSTIA platform are utilized for RUL prognostics. Compared with several representative and state-of-the-art methods, the experimental results demonstrate the superiority and feasibility of the proposed method. And ablation study indicates the high efficiency and robustness of each module within the proposed model. Compared with representative RUL prediction methods, the proposed KE-CTEM demonstrates superior performance in terms of RMSE and MAPE with a reduction of 32.0% and 16.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flance完成签到 ,获得积分10
1秒前
iNk应助沉默的谷秋采纳,获得10
1秒前
锌离子欣完成签到,获得积分10
3秒前
bxxxxx完成签到,获得积分10
4秒前
PCEEN发布了新的文献求助10
4秒前
miamia77完成签到,获得积分10
4秒前
5秒前
含蓄的赛君完成签到,获得积分10
5秒前
SYLH应助优秀斑马采纳,获得10
6秒前
傻傻完成签到,获得积分10
7秒前
mjje完成签到,获得积分10
7秒前
8秒前
ZMH发布了新的文献求助10
8秒前
Orange应助PCEEN采纳,获得10
9秒前
10秒前
LBQ完成签到,获得积分10
11秒前
11秒前
Panchael完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助10
12秒前
传统的孤丝完成签到 ,获得积分10
13秒前
13秒前
上好佳发布了新的文献求助10
14秒前
博修发布了新的文献求助200
14秒前
14秒前
Brain发布了新的文献求助10
16秒前
Zel博博发布了新的文献求助10
16秒前
超帅的不尤完成签到,获得积分10
16秒前
MOMO完成签到 ,获得积分10
18秒前
20秒前
正在下雨完成签到 ,获得积分10
20秒前
小文完成签到,获得积分10
21秒前
23秒前
TiYooY发布了新的文献求助10
24秒前
彗星入梦完成签到 ,获得积分10
25秒前
26秒前
王恩惠发布了新的文献求助10
26秒前
yx完成签到,获得积分10
26秒前
研友_VZG7GZ应助王德威采纳,获得10
26秒前
26秒前
小乔同学发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993