Improved Pest-YOLO: Real-time pest detection based on efficient channel attention mechanism and transformer encoder

有害生物分析 计算机科学 编码器 人工智能 卷积神经网络 特征提取 害虫 模式识别(心理学) 机器学习 生物 植物 农学 操作系统
作者
Zhe Tang,Jiajia Lu,Zhengyun Chen,Fang Qi,Lingyan Zhang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102340-102340 被引量:38
标识
DOI:10.1016/j.ecoinf.2023.102340
摘要

Insect infestations and pests inflict significant losses in agriculture, substantially augmenting the demand for automated pest detection and early pest management in the cultivation process. However, the task of multi-class pest identification, involving both localization and classification, is exceptionally challenging due to the small size, great similarity, and environmental variability of pests. This paper presents an enhanced version of our previous work, Pest-YOLO, aimed at improving accuracy while maintaining real-time pest detection. The improved Pest-YOLO incorporates two key advancements: an efficient channel attention (ECA) mechanism for improved feature extraction and a transformer encoder for capturing global features. We replace the original squeeze-excitation attention mechanism with the ECA mechanism, effectively improving the model's ability to extract essential features from pest images. Additionally, we introduce the transformer encoder to the convolutional neural network (CNN) architecture to enhance its capability to capture global contextual information. To further enhance the expressiveness of features for small targets like agricultural pests, we propose a feature fusion method called cross-stage feature fusion (CSFF). This method significantly improves the representation of small targets during the feature fusion stage. Through experiments on the Pest24 dataset, our method achieves an impressive mean average precision of 73.4%, surpassing the performance of state-of-the-art methods. These results demonstrate the effectiveness of our improved Pest-YOLO model in accurately detecting pests in real-time scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维奈克拉应助孟寐以求采纳,获得20
刚刚
刚刚
刚刚
席水蓉完成签到 ,获得积分10
刚刚
刚刚
Dream完成签到,获得积分10
1秒前
uf欧完成签到,获得积分10
1秒前
波菌完成签到,获得积分10
1秒前
2秒前
小乖完成签到,获得积分10
2秒前
大意的飞莲完成签到 ,获得积分10
2秒前
3秒前
3秒前
王京华发布了新的文献求助10
3秒前
平常亦凝关注了科研通微信公众号
3秒前
4秒前
zzsy完成签到,获得积分10
4秒前
领导范儿应助道天采纳,获得10
4秒前
稳重紫蓝完成签到 ,获得积分10
5秒前
科研通AI2S应助于特采纳,获得10
5秒前
zmz应助郑大钱采纳,获得10
6秒前
6秒前
6秒前
lizi完成签到,获得积分10
6秒前
6秒前
7秒前
春雨发布了新的文献求助10
7秒前
朵朵发布了新的文献求助10
7秒前
7秒前
顾矜应助张垚采纳,获得10
8秒前
冷傲松鼠完成签到 ,获得积分10
8秒前
邵初蓝完成签到,获得积分10
9秒前
10秒前
燕燕完成签到 ,获得积分10
10秒前
傻傻的修洁完成签到,获得积分10
10秒前
10秒前
uf欧发布了新的文献求助10
10秒前
称心的灵枫完成签到 ,获得积分20
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034