Improved Pest-YOLO: Real-time pest detection based on efficient channel attention mechanism and transformer encoder

有害生物分析 计算机科学 编码器 人工智能 卷积神经网络 特征提取 害虫 模式识别(心理学) 机器学习 生物 农学 植物 操作系统
作者
Zhe Tang,Jiajia Lu,Zhengyun Chen,Fang Qi,Lingyan Zhang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102340-102340 被引量:7
标识
DOI:10.1016/j.ecoinf.2023.102340
摘要

Insect infestations and pests inflict significant losses in agriculture, substantially augmenting the demand for automated pest detection and early pest management in the cultivation process. However, the task of multi-class pest identification, involving both localization and classification, is exceptionally challenging due to the small size, great similarity, and environmental variability of pests. This paper presents an enhanced version of our previous work, Pest-YOLO, aimed at improving accuracy while maintaining real-time pest detection. The improved Pest-YOLO incorporates two key advancements: an efficient channel attention (ECA) mechanism for improved feature extraction and a transformer encoder for capturing global features. We replace the original squeeze-excitation attention mechanism with the ECA mechanism, effectively improving the model's ability to extract essential features from pest images. Additionally, we introduce the transformer encoder to the convolutional neural network (CNN) architecture to enhance its capability to capture global contextual information. To further enhance the expressiveness of features for small targets like agricultural pests, we propose a feature fusion method called cross-stage feature fusion (CSFF). This method significantly improves the representation of small targets during the feature fusion stage. Through experiments on the Pest24 dataset, our method achieves an impressive mean average precision of 73.4%, surpassing the performance of state-of-the-art methods. These results demonstrate the effectiveness of our improved Pest-YOLO model in accurately detecting pests in real-time scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疑问师完成签到,获得积分10
1秒前
1秒前
2秒前
跳跃的雨兰完成签到 ,获得积分10
3秒前
狗东西完成签到,获得积分20
3秒前
Librafans完成签到,获得积分10
4秒前
科研通AI2S应助hanzhenzhen采纳,获得10
6秒前
啦啦啦完成签到,获得积分10
8秒前
donny发布了新的文献求助10
8秒前
8秒前
8秒前
狗东西发布了新的文献求助30
9秒前
嘀嘀菇菇完成签到 ,获得积分10
11秒前
Ade发布了新的文献求助10
11秒前
坚强的铅笔完成签到 ,获得积分10
11秒前
大蓝蓝放电水母完成签到,获得积分10
13秒前
大模型应助donny采纳,获得10
13秒前
13秒前
13秒前
明亮无颜完成签到,获得积分10
14秒前
赘婿应助faiting采纳,获得10
15秒前
充电宝应助doctor_loong采纳,获得10
16秒前
明亮无颜发布了新的文献求助30
17秒前
donny完成签到,获得积分10
18秒前
慕青应助axuan采纳,获得10
18秒前
19秒前
桐桐应助凡雪采纳,获得10
21秒前
eric完成签到,获得积分10
21秒前
jagger完成签到,获得积分10
21秒前
22秒前
wayne完成签到,获得积分10
24秒前
背带裤打篮球应助支雨泽采纳,获得20
25秒前
Eric完成签到,获得积分10
26秒前
27秒前
doctor_loong完成签到,获得积分10
30秒前
hawaii66完成签到,获得积分10
32秒前
33秒前
rtmatrix完成签到 ,获得积分10
34秒前
领导范儿应助boltos采纳,获得10
35秒前
代纤绮完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Inorganic Chemistry 5th Edition Catherine Housecroft 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357312
求助须知:如何正确求助?哪些是违规求助? 2980824
关于积分的说明 8696311
捐赠科研通 2662479
什么是DOI,文献DOI怎么找? 1457877
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665938