Improved Pest-YOLO: Real-time pest detection based on efficient channel attention mechanism and transformer encoder

有害生物分析 计算机科学 编码器 人工智能 卷积神经网络 特征提取 害虫 模式识别(心理学) 机器学习 生物 农学 植物 操作系统
作者
Zhe Tang,Jiajia Lu,Zhengyun Chen,Fang Qi,Lingyan Zhang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102340-102340 被引量:27
标识
DOI:10.1016/j.ecoinf.2023.102340
摘要

Insect infestations and pests inflict significant losses in agriculture, substantially augmenting the demand for automated pest detection and early pest management in the cultivation process. However, the task of multi-class pest identification, involving both localization and classification, is exceptionally challenging due to the small size, great similarity, and environmental variability of pests. This paper presents an enhanced version of our previous work, Pest-YOLO, aimed at improving accuracy while maintaining real-time pest detection. The improved Pest-YOLO incorporates two key advancements: an efficient channel attention (ECA) mechanism for improved feature extraction and a transformer encoder for capturing global features. We replace the original squeeze-excitation attention mechanism with the ECA mechanism, effectively improving the model's ability to extract essential features from pest images. Additionally, we introduce the transformer encoder to the convolutional neural network (CNN) architecture to enhance its capability to capture global contextual information. To further enhance the expressiveness of features for small targets like agricultural pests, we propose a feature fusion method called cross-stage feature fusion (CSFF). This method significantly improves the representation of small targets during the feature fusion stage. Through experiments on the Pest24 dataset, our method achieves an impressive mean average precision of 73.4%, surpassing the performance of state-of-the-art methods. These results demonstrate the effectiveness of our improved Pest-YOLO model in accurately detecting pests in real-time scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
万能图书馆应助爱睡午觉采纳,获得10
2秒前
3秒前
今后应助傻傻的听安采纳,获得10
5秒前
小聂123完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
小聂123发布了新的文献求助10
7秒前
CipherSage应助麦子采纳,获得10
7秒前
7秒前
球魁发布了新的文献求助10
8秒前
feng发布了新的文献求助10
8秒前
完美世界应助Vicky采纳,获得10
9秒前
JggHoo发布了新的文献求助10
10秒前
日常常完成签到,获得积分10
10秒前
11秒前
12秒前
震动的雅柔完成签到,获得积分10
13秒前
寒冷忆山发布了新的文献求助10
13秒前
znn123发布了新的文献求助10
14秒前
15秒前
地表飞猪应助枫昱采纳,获得10
15秒前
lllliu发布了新的文献求助30
15秒前
晴烟ZYM发布了新的文献求助30
15秒前
16秒前
神明发布了新的文献求助10
17秒前
快乐枫发布了新的文献求助10
18秒前
aniannn发布了新的文献求助10
18秒前
球魁完成签到,获得积分10
18秒前
无花果应助伴风望海采纳,获得10
19秒前
19秒前
20秒前
葫芦娃完成签到,获得积分20
21秒前
znn123完成签到,获得积分20
21秒前
xixi发布了新的文献求助10
21秒前
慕青应助欢呼的渊思采纳,获得10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496