Deep predictions and transfer learning for simulation-driven structural health monitoring based on guided waves

计算机科学 结构健康监测 Boosting(机器学习) 特征(语言学) 学习迁移 激光多普勒测振仪 人工智能 深度学习 人工神经网络 机器学习 模式识别(心理学) 激光器 物理 工程类 结构工程 光学 哲学 语言学 分布反馈激光器
作者
Simon Hoell,Christoph Humer
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122133-122133 被引量:2
标识
DOI:10.1016/j.eswa.2023.122133
摘要

Simulation-driven structural health monitoring (SHM) is crucial for enhancing the safety and reliability of structures. Its primary aim is to utilize numerical simulations to design efficient SHM systems, reducing costs while maintaining effectiveness. However, challenges arise due to disparities between simulations and physical measurements, stemming from uncertainties, noise, and simplifications. These challenges also extend to SHM methods using machine learning, particularly deep neural networks (DNNs). This paper bridges the gap between DNNs trained on simulated data and real-world experiments by investigating three transfer learning (TL) techniques: feature augmentation, direct fine-tuning, and boosting-based fine-tuning. The focus is on guided wave damage interaction coefficients (WDICs) as damage-sensitive features, modeled by DNNs for damage identification in thin plates, commonly found in aerospace structures like aircraft fuselages. This classification task compares measured and predicted WDICs in a common guided wave SHM configuration with one actuator and three sensors. Training and extensive testing datasets are generated using advanced finite element simulations and laser Doppler vibrometer experiments. The study demonstrates that TL techniques significantly enhance DNN prediction accuracy and improve damage identification performance for untrained scenarios compared to purely simulation-based DNNs. Among the TL approaches explored, feature augmentation with appropriate activation functions and boosting-based fine-tuning yield the most promising results. Using four out of twelve TL datasets, feature augmentation reduces the simulation-based mean absolute percentage error from 46.80% to 35.98% and increases coefficient of determination R2 values from 0.02 to 0.72. With six TL datasets and a boosting-based fine tuning, the mean absolute percentage error decreases from 47.42% to 35.20%, maintaining similar R2 values. While TL substantially enhances prediction accuracy, its impact on damage identification is slightly less pronounced, with improvements in relative classification accuracy by approximately 5% compared to simulation-based DNNs. These findings highlight the efficacy of TL techniques for damage identification in thin plates using WDICs and DNNs, emphasizing the influence of TL training and DNN model variations. Furthermore, they showcase the potential of TL methods to enhance DNN performance in future SHM applications, particularly emphasizing the promise of feature augmentation and boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的萝发布了新的文献求助10
刚刚
1秒前
LeiX完成签到,获得积分10
1秒前
1秒前
坚守初心发布了新的文献求助10
1秒前
大反应釜发布了新的文献求助20
2秒前
NexusExplorer应助小太阳采纳,获得10
3秒前
z.完成签到,获得积分10
4秒前
4秒前
伊酒应助jideli采纳,获得10
5秒前
li发布了新的文献求助10
6秒前
满意的嵩发布了新的文献求助10
6秒前
6秒前
7秒前
景觅波发布了新的文献求助10
8秒前
9秒前
Lee发布了新的文献求助10
9秒前
丘比特应助婷妮哒哒采纳,获得10
10秒前
11秒前
放寒假的发布了新的文献求助10
11秒前
CipherSage应助端庄的萝采纳,获得10
12秒前
关关完成签到,获得积分20
13秒前
飞流直下完成签到 ,获得积分10
13秒前
13秒前
满意的嵩完成签到,获得积分10
14秒前
Murphy发布了新的文献求助10
15秒前
16秒前
cocolu发布了新的文献求助30
16秒前
zzh发布了新的文献求助10
16秒前
17秒前
19秒前
Lucas应助清秀面包采纳,获得30
19秒前
20秒前
希望天下0贩的0应助阿呆采纳,获得10
20秒前
dong发布了新的文献求助10
21秒前
司空豁发布了新的文献求助10
21秒前
lc339发布了新的文献求助10
22秒前
yanganqi发布了新的文献求助10
22秒前
灯火可亲发布了新的文献求助10
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664