Optimizing Deep Learning for Cardiac MRI Segmentation: The Impact of Automated Slice Range Classification

分割 人工智能 豪斯多夫距离 磁共振成像 射血分数 计算机科学 模式识别(心理学) 心室 医学 放射科 心脏病学 心力衰竭
作者
Sarv Priya,Durjoy Deb Dhruba,Sarah S. Perry,Pritish Y. Aher,Amit Gupta,Prashant Nagpal,Mathews Jacob
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 503-513
标识
DOI:10.1016/j.acra.2023.07.008
摘要

Cardiac magnetic resonance imaging is crucial for diagnosing cardiovascular diseases, but lengthy postprocessing and manual segmentation can lead to observer bias. Deep learning (DL) has been proposed for automated cardiac segmentation; however, its effectiveness is limited by the slice range selection from base to apex.In this study, we integrated an automated slice range classification step to identify basal to apical short-axis slices before DL-based segmentation. We employed publicly available Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI data set with short-axis cine data from 160 training, 40 validation, and 160 testing cases. Three classification and seven segmentation DL models were studied. The top-performing segmentation model was assessed with and without the classification model. Model validation to compare automated and manual segmentation was performed using Dice score and Hausdorff distance and clinical indices (correlation score and Bland-Altman plots).The combined classification (CBAM-integrated 2D-CNN) and segmentation model (2D-UNet with dilated convolution block) demonstrated superior performance, achieving Dice scores of 0.952 for left ventricle (LV), 0.933 for right ventricle (RV), and 0.875 for myocardium, compared to the stand-alone segmentation model (0.949 for LV, 0.925 for RV, and 0.867 for myocardium). Combined classification and segmentation model showed high correlation (0.92-0.99) with manual segmentation for biventricular volumes, ejection fraction, and myocardial mass. The mean absolute difference (2.8-8.3 mL) for clinical parameters between automated and manual segmentation was within the interobserver variability range, indicating comparable performance to manual annotation.Integrating an initial automated slice range classification step into the segmentation process improves the performance of DL-based cardiac chamber segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩韩发布了新的文献求助10
刚刚
kino完成签到 ,获得积分20
1秒前
小花生完成签到 ,获得积分20
2秒前
3秒前
转着我的头完成签到,获得积分20
4秒前
阳光永在发布了新的文献求助10
4秒前
5秒前
星辰大海应助Neon采纳,获得10
6秒前
8秒前
10秒前
畅快芝麻发布了新的文献求助10
11秒前
windli完成签到,获得积分10
12秒前
12秒前
13秒前
ray关闭了ray文献求助
14秒前
肖肖肖发布了新的文献求助10
14秒前
情怀应助xuulanni采纳,获得10
14秒前
16秒前
16秒前
飞快的忆雪完成签到 ,获得积分10
17秒前
17秒前
fan发布了新的文献求助10
18秒前
万能图书馆应助zhao采纳,获得10
20秒前
20秒前
飞快的忆雪关注了科研通微信公众号
21秒前
21秒前
孤独惜海发布了新的文献求助30
21秒前
22秒前
ECHO发布了新的文献求助10
23秒前
23秒前
赵纤发布了新的文献求助10
26秒前
YELLOW发布了新的文献求助10
29秒前
29秒前
乐乐完成签到 ,获得积分10
29秒前
小七发布了新的文献求助10
30秒前
30秒前
cyl发布了新的文献求助100
30秒前
今后应助小孙采纳,获得10
31秒前
31秒前
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700