亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的惮发布了新的文献求助10
2秒前
CodeCraft应助水水水采纳,获得10
4秒前
kekao发布了新的文献求助10
21秒前
上官若男应助Hayward采纳,获得10
30秒前
香蕉觅云应助选波采纳,获得10
31秒前
33秒前
34秒前
思源应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
清飏应助科研通管家采纳,获得30
34秒前
kekao完成签到,获得积分10
35秒前
水水水发布了新的文献求助10
39秒前
bkagyin应助gdpu_omics采纳,获得10
51秒前
57秒前
58秒前
小不点完成签到,获得积分10
58秒前
tlj0808发布了新的文献求助20
1分钟前
选波发布了新的文献求助10
1分钟前
今后应助小不点采纳,获得10
1分钟前
小袁完成签到 ,获得积分10
1分钟前
AU完成签到 ,获得积分10
2分钟前
顺心蜜粉完成签到,获得积分10
2分钟前
2分钟前
TsuKe完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
顺心蜜粉发布了新的文献求助100
2分钟前
完美世界应助JJS采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Hayward发布了新的文献求助10
2分钟前
2分钟前
tlj0808发布了新的文献求助10
2分钟前
哲别发布了新的文献求助10
2分钟前
ding应助Hayward采纳,获得30
2分钟前
桃桃发布了新的文献求助10
3分钟前
3分钟前
3分钟前
gdpu_omics发布了新的文献求助10
3分钟前
JJS发布了新的文献求助10
3分钟前
JJS完成签到,获得积分10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764877
关于积分的说明 15025423
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567817
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958