Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小帅完成签到,获得积分10
刚刚
刚刚
1秒前
核动力驴应助小马奔腾采纳,获得10
1秒前
小二郎应助学术laji采纳,获得10
1秒前
zsd完成签到,获得积分10
1秒前
Cy-coolorgan完成签到,获得积分10
2秒前
田様应助眼睛大的从雪采纳,获得10
2秒前
山野下发布了新的文献求助10
2秒前
A9W01U完成签到,获得积分10
3秒前
NexusExplorer应助幸福妙柏采纳,获得10
3秒前
orixero应助飘逸铅笔采纳,获得10
3秒前
我是老大应助怡然的安卉采纳,获得10
3秒前
3秒前
小帅发布了新的文献求助10
4秒前
5秒前
冷酷酸奶发布了新的文献求助10
5秒前
5秒前
feng完成签到 ,获得积分10
5秒前
xuexue发布了新的文献求助10
5秒前
6秒前
自渡完成签到,获得积分20
6秒前
小马甲应助EKKO采纳,获得10
6秒前
张羊羔完成签到,获得积分10
7秒前
apiaji完成签到,获得积分10
7秒前
咸吃萝卜淡操心完成签到,获得积分10
7秒前
hanleiharry1发布了新的文献求助10
7秒前
汉堡包应助Ephemerality采纳,获得10
7秒前
7秒前
bwl发布了新的文献求助10
8秒前
CipherSage应助椰椰采纳,获得10
8秒前
Muzi发布了新的文献求助10
10秒前
小二郎应助自渡采纳,获得10
11秒前
芳芳子完成签到 ,获得积分20
11秒前
tingfengxiao发布了新的文献求助10
12秒前
栗子鱼完成签到,获得积分10
12秒前
wanci应助如意元霜采纳,获得10
12秒前
李健应助崔慧敏采纳,获得10
12秒前
共享精神应助枫叶采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663371
求助须知:如何正确求助?哪些是违规求助? 4849055
关于积分的说明 15103646
捐赠科研通 4821662
什么是DOI,文献DOI怎么找? 2580844
邀请新用户注册赠送积分活动 1535043
关于科研通互助平台的介绍 1493426