Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助zzz采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
3秒前
asdfzxcv应助小giao吃不饱采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
初雪发布了新的文献求助10
6秒前
路宇鹏完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
天天快乐应助薛飞采纳,获得10
9秒前
li发布了新的文献求助10
9秒前
9秒前
Return发布了新的文献求助10
10秒前
cjh发布了新的文献求助10
10秒前
10秒前
鲤鱼水桃发布了新的文献求助10
10秒前
友好安白发布了新的文献求助10
12秒前
小马甲应助笑点低雨筠采纳,获得10
13秒前
行走人生发布了新的文献求助30
13秒前
喵喵完成签到 ,获得积分10
13秒前
Dy发布了新的文献求助10
13秒前
小鬼发布了新的文献求助10
14秒前
勤奋的缘郡完成签到,获得积分10
15秒前
994发布了新的文献求助10
15秒前
李健的小迷弟应助ZNX采纳,获得10
15秒前
16秒前
小蘑菇应助jovrtic采纳,获得10
16秒前
饱满以松完成签到 ,获得积分10
16秒前
19秒前
深情安青应助Scarlett采纳,获得10
20秒前
23秒前
小giao吃不饱完成签到,获得积分10
24秒前
24秒前
Lucas应助腼腆的月亮采纳,获得10
24秒前
红火完成签到 ,获得积分10
24秒前
xlnju完成签到,获得积分10
26秒前
123发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917