亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废物完成签到 ,获得积分10
1秒前
llllll发布了新的文献求助10
1秒前
Owen应助鸟Pro采纳,获得10
4秒前
dkw完成签到 ,获得积分10
5秒前
9秒前
年轻花卷完成签到 ,获得积分10
10秒前
mecsxg完成签到,获得积分10
11秒前
小新完成签到 ,获得积分10
11秒前
我不是BOB完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助weiyichen采纳,获得10
14秒前
20秒前
清秀芝麻完成签到 ,获得积分10
21秒前
乐乐应助endlessloop采纳,获得10
22秒前
柳行天完成签到 ,获得积分10
25秒前
乐观小蕊完成签到 ,获得积分10
28秒前
llllll完成签到,获得积分10
29秒前
森距离发布了新的文献求助10
30秒前
郭荣发布了新的文献求助10
31秒前
34秒前
爱吃饼干的土拨鼠完成签到,获得积分10
38秒前
endlessloop发布了新的文献求助10
39秒前
爆米花应助森距离采纳,获得10
40秒前
小eeeeee完成签到 ,获得积分10
40秒前
43秒前
43秒前
endlessloop完成签到,获得积分20
44秒前
量子星尘发布了新的文献求助10
45秒前
OOO完成签到 ,获得积分10
45秒前
愚人发布了新的文献求助10
47秒前
Becky完成签到 ,获得积分10
47秒前
chen发布了新的文献求助10
47秒前
森距离完成签到,获得积分10
49秒前
长情飞丹完成签到,获得积分10
51秒前
52秒前
愚人完成签到,获得积分10
52秒前
Splaink完成签到 ,获得积分10
53秒前
王火火完成签到 ,获得积分10
54秒前
闲鱼耶鹤完成签到 ,获得积分10
57秒前
郭荣完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681113
求助须知:如何正确求助?哪些是违规求助? 5004606
关于积分的说明 15174989
捐赠科研通 4840793
什么是DOI,文献DOI怎么找? 2594460
邀请新用户注册赠送积分活动 1547586
关于科研通互助平台的介绍 1505524