Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 神经科学 系统工程
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助Angie采纳,获得50
1秒前
1秒前
小猴发布了新的文献求助10
1秒前
DRHSK发布了新的文献求助20
2秒前
Spinnin完成签到,获得积分10
3秒前
国足预备员完成签到 ,获得积分10
3秒前
ding应助piers采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
张德洁完成签到,获得积分10
4秒前
昭玥完成签到,获得积分10
5秒前
5秒前
5秒前
顾矜应助咸鱼采纳,获得10
5秒前
领导范儿应助小王采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Ava应助xhDoc采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
常常完成签到,获得积分0
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
脂蛋白抗原应助杨老师采纳,获得10
5秒前
Orange应助后夜采纳,获得10
5秒前
5秒前
666JACS完成签到,获得积分20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
chenhuiwan应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研豆包完成签到 ,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
PP应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475