Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方雪冰完成签到,获得积分10
刚刚
1秒前
在水一方应助善良的以亦采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
费费发布了新的文献求助10
3秒前
xwshe97发布了新的文献求助10
3秒前
泡泡完成签到,获得积分10
4秒前
答题先写解完成签到 ,获得积分10
4秒前
4秒前
团结友爱完成签到,获得积分10
4秒前
科研通AI6应助安河桥采纳,获得10
5秒前
嘿嘿发布了新的文献求助10
5秒前
好久不见发布了新的文献求助10
5秒前
俭朴亦凝完成签到,获得积分20
6秒前
bai发布了新的文献求助10
6秒前
可爱的函函应助7788采纳,获得10
6秒前
慕青应助迅速如波采纳,获得10
6秒前
李健的小迷弟应助lwq采纳,获得10
7秒前
xiamovivi发布了新的文献求助10
7秒前
yzy完成签到,获得积分10
7秒前
Georges-09发布了新的文献求助10
7秒前
asudvbcbjd完成签到,获得积分10
7秒前
7秒前
wu完成签到,获得积分10
7秒前
7秒前
羊羊羊完成签到,获得积分10
7秒前
8秒前
123发布了新的文献求助10
8秒前
8秒前
tt完成签到,获得积分10
8秒前
8秒前
9秒前
Owen应助zhuzhu采纳,获得20
9秒前
方旋完成签到,获得积分10
9秒前
西瓜太郎发布了新的文献求助10
10秒前
张苗发布了新的文献求助10
11秒前
翻似烂柯人完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099