Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
ZCM关闭了ZCM文献求助
2秒前
标致忆丹完成签到,获得积分10
2秒前
2秒前
filwasb发布了新的文献求助10
2秒前
棉花糖发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
小橙子发布了新的文献求助10
3秒前
斯文败类应助薯片采纳,获得10
4秒前
领导范儿应助狂野善愁采纳,获得10
4秒前
上官若男应助Xu采纳,获得10
4秒前
4秒前
领导范儿应助纯真忆安采纳,获得10
5秒前
5秒前
杨知意完成签到,获得积分10
5秒前
赘婿应助wuhao1采纳,获得10
6秒前
852应助wxz1998采纳,获得10
6秒前
悲凉的大船完成签到,获得积分10
6秒前
达奚多思发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
戒骄戒躁发布了新的文献求助10
7秒前
Laurie完成签到,获得积分10
7秒前
含糊的玲完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
薯片完成签到,获得积分10
9秒前
123116011411完成签到,获得积分20
9秒前
9秒前
动听以晴发布了新的文献求助10
9秒前
慢慢发布了新的文献求助10
9秒前
SciGPT应助惠葶采纳,获得10
10秒前
10秒前
11秒前
tcf应助清雅采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285