Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1776734134完成签到 ,获得积分10
1秒前
2秒前
彭于晏应助026采纳,获得10
2秒前
2秒前
寒冷的碧蓉关注了科研通微信公众号
3秒前
甜甜谷波完成签到,获得积分20
3秒前
蛋黄派完成签到,获得积分10
4秒前
zhang发布了新的文献求助10
5秒前
芋泥啵啵发布了新的文献求助30
5秒前
欢子12321发布了新的文献求助10
6秒前
希望天下0贩的0应助CHL5722采纳,获得10
7秒前
7秒前
烤麸发布了新的文献求助10
7秒前
8秒前
9秒前
Jasper应助南乔采纳,获得10
9秒前
9秒前
9秒前
杙北完成签到 ,获得积分10
10秒前
星辰大海应助冬瓜采纳,获得10
11秒前
隐形曼青应助肖敏采纳,获得10
11秒前
11秒前
轨迹应助fafafa采纳,获得30
12秒前
张张发布了新的文献求助10
12秒前
远志完成签到,获得积分10
12秒前
8712发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
杨德帅发布了新的文献求助10
13秒前
026发布了新的文献求助10
13秒前
彳山一完成签到,获得积分10
14秒前
迅速如柏发布了新的文献求助10
14秒前
14秒前
Jasper应助皮包医师采纳,获得10
15秒前
小二郎应助老迟到的芹菜采纳,获得10
15秒前
甜甜谷波发布了新的文献求助10
16秒前
研友_VZG7GZ应助繁荣的怀蕊采纳,获得10
16秒前
情怀应助gan采纳,获得10
16秒前
17秒前
轨迹应助corazon采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768