Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遲悟篤行完成签到,获得积分10
1秒前
尹雪儿完成签到,获得积分10
1秒前
充电宝应助qq采纳,获得10
2秒前
AhhHuang应助容若采纳,获得10
3秒前
3秒前
科目三应助炙热的平灵采纳,获得10
3秒前
liuanqi发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI6应助文乐采纳,获得10
4秒前
安安安完成签到,获得积分10
5秒前
5秒前
Unicorn发布了新的文献求助10
5秒前
斯文败类应助清浅采纳,获得30
5秒前
5秒前
小二郎应助yyj采纳,获得10
6秒前
Aryac发布了新的文献求助10
6秒前
6秒前
7秒前
Pothos应助YAN采纳,获得30
8秒前
gzhoax应助山山而川采纳,获得30
8秒前
科研通AI6应助liam采纳,获得10
8秒前
烟里戏发布了新的文献求助10
8秒前
沙糖桔完成签到,获得积分10
8秒前
9秒前
Sunday给Sunday的求助进行了留言
9秒前
9秒前
ppy发布了新的文献求助10
9秒前
Chris发布了新的文献求助30
9秒前
嬴炎发布了新的文献求助10
9秒前
成就雨筠完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
崔大冠发布了新的文献求助10
10秒前
10秒前
11秒前
晚阳完成签到,获得积分10
11秒前
Yuna完成签到,获得积分10
11秒前
殷勤的妙松完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041