Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 系统工程 神经科学
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
guzhenyang完成签到,获得积分10
1秒前
碧蓝可仁完成签到 ,获得积分10
4秒前
yaomax完成签到 ,获得积分10
7秒前
熊雅完成签到,获得积分10
8秒前
lyu完成签到,获得积分10
8秒前
shenmeijing完成签到 ,获得积分10
13秒前
花样年华完成签到,获得积分10
15秒前
Xiaoyisheng完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
无幻完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
lanxinge完成签到 ,获得积分10
18秒前
ssk完成签到,获得积分10
19秒前
20秒前
Yina完成签到 ,获得积分10
20秒前
21秒前
无情丹秋发布了新的文献求助10
26秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
Colo发布了新的文献求助10
33秒前
简爱完成签到 ,获得积分10
34秒前
35秒前
量子星尘发布了新的文献求助10
37秒前
小莫完成签到 ,获得积分10
41秒前
推土机爱学习完成签到 ,获得积分10
43秒前
拉长的诗蕊完成签到,获得积分10
44秒前
千玺的小粉丝儿完成签到,获得积分10
47秒前
从容的水壶完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
50秒前
达尔文1完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
59秒前
alice01987完成签到,获得积分10
1分钟前
Jinyang完成签到 ,获得积分10
1分钟前
达尔文完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
久旱逢甘霖完成签到 ,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856