Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 神经科学 系统工程
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lin关注了科研通微信公众号
3秒前
4秒前
兴奋小丸子完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
keyanxiaobai完成签到,获得积分10
8秒前
二十二点36完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
英勇星月完成签到 ,获得积分10
12秒前
zgt01发布了新的文献求助10
12秒前
新德里梅塔洛1号完成签到,获得积分20
15秒前
18秒前
wp完成签到,获得积分10
23秒前
splemeth完成签到,获得积分10
23秒前
雪白的紫翠完成签到 ,获得积分10
24秒前
哈哈完成签到,获得积分10
25秒前
淡定访琴完成签到,获得积分10
27秒前
大力云朵完成签到,获得积分10
29秒前
ADcal完成签到 ,获得积分10
29秒前
29秒前
tony完成签到,获得积分10
29秒前
苏苏完成签到,获得积分10
31秒前
WuFen完成签到 ,获得积分10
32秒前
淘宝叮咚完成签到,获得积分10
32秒前
高高从云完成签到 ,获得积分10
33秒前
情怀应助唐唐采纳,获得10
34秒前
科研肥料完成签到,获得积分10
35秒前
每天都在找完成签到,获得积分10
35秒前
桐桐应助zzw采纳,获得20
35秒前
35秒前
吕布完成签到,获得积分10
36秒前
36秒前
ChenYifei完成签到,获得积分10
40秒前
qq发布了新的文献求助10
40秒前
Smiley完成签到 ,获得积分10
43秒前
hzauhzau完成签到 ,获得积分10
43秒前
白桃完成签到 ,获得积分10
45秒前
小八统治世界完成签到 ,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022