已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of Driver Cognitive Distraction Using Driver Performance Measures, Eye-Tracking Data and a D-FFNN Model

分散注意力 计算机科学 认知 眼动 驾驶模拟器 人工智能 任务(项目管理) 计算机视觉 模拟 工程类 心理学 认知心理学 神经科学 系统工程
作者
Arian Shajari,Houshyar Asadi,Shehab Alsanwy,Saeid Nahavandi
标识
DOI:10.1109/smc53992.2023.10393914
摘要

The issue of cognitive distraction during driving has been identified as a major cause of road accidents. Detecting cognitive distraction in real-time can be a valuable strategy for preventing accidents. In this study, a novel approach is presented for the purpose of detecting cognitive distraction in real-time using artificial intelligence while taking into account eye-tracking and head movement data, combined with driving performance measures. This methodology involved collecting data from participants in a driving simulator, on a motion platform, while they performed a cognitive task as well as a control driving scenario. The data collected included eye-tracking data, head movement data, driving performance measures, and subjective ratings of distraction. To develop an accurate model for detecting cognitive distraction, a Deep Feedforward Neural Network (D-FFNN) model was employed while considering binocular gaze direction, pupil diameter, orientation of each eye, head rotational velocities, and head acceleration. The developed model was trained using the collected data and achieved an accuracy of 96.09% in detecting cognitive distraction. The results of our study demonstrate the effectiveness of the proposed method in identifying cognitive distraction in real-time. Also, the accuracy of this model was compared with other AI based classification algorithms. The proposed method has significant implications for preventing vehicle accidents caused by cognitive distraction. The proposed method can be integrated into existing driver-assistance systems to alert drivers and assist them in returning their focus to the road.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搜集达人应助认真的傲柏采纳,获得10
3秒前
4秒前
肉丝面发布了新的文献求助30
5秒前
7秒前
专注洋葱完成签到,获得积分10
8秒前
Bighen完成签到 ,获得积分10
8秒前
11秒前
royal完成签到 ,获得积分10
11秒前
11秒前
自由的梦露完成签到 ,获得积分10
13秒前
www发布了新的文献求助10
17秒前
xixixi完成签到 ,获得积分10
17秒前
18秒前
冷静冰双完成签到,获得积分20
20秒前
小马甲应助朴实小鸭子采纳,获得10
22秒前
lily完成签到,获得积分10
23秒前
粿粿一定行完成签到 ,获得积分10
23秒前
24秒前
24秒前
ausue发布了新的文献求助10
30秒前
oy完成签到,获得积分10
31秒前
33秒前
aya完成签到 ,获得积分20
37秒前
黑球发布了新的文献求助10
39秒前
41秒前
46秒前
黑球完成签到,获得积分10
48秒前
51秒前
51秒前
认真的傲柏完成签到,获得积分10
51秒前
李志全完成签到 ,获得积分10
59秒前
稳重的蜜蜂完成签到,获得积分10
1分钟前
Endlessway应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
彭于晏应助dkb采纳,获得10
1分钟前
Zoe完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223779
求助须知:如何正确求助?哪些是违规求助? 2872209
关于积分的说明 8179340
捐赠科研通 2539100
什么是DOI,文献DOI怎么找? 1371152
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010