CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Minshan Jiang,Yongfei Zhu,Xuedian Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108047-108047 被引量:12
标识
DOI:10.1016/j.compbiomed.2024.108047
摘要

Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Harish发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助Lll采纳,获得20
1秒前
2秒前
2秒前
111发布了新的文献求助10
3秒前
我是你爹完成签到,获得积分10
3秒前
百招完成签到,获得积分10
3秒前
乌冬关注了科研通微信公众号
3秒前
4秒前
5秒前
Baneyhua发布了新的文献求助10
5秒前
una完成签到 ,获得积分10
7秒前
思源应助send采纳,获得10
7秒前
大模型应助不舍天真采纳,获得10
7秒前
小章发布了新的文献求助10
8秒前
传奇3应助velablk采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助平淡汽车采纳,获得10
10秒前
11秒前
huaming发布了新的文献求助10
11秒前
木子发布了新的文献求助10
12秒前
zzx发布了新的文献求助10
14秒前
tododoto完成签到,获得积分10
14秒前
布灵发布了新的文献求助10
15秒前
英俊的铭应助kj采纳,获得10
16秒前
17秒前
Susan发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
长孙巧凡完成签到,获得积分10
18秒前
zsy完成签到,获得积分10
19秒前
长情绿凝完成签到,获得积分10
22秒前
Zj发布了新的文献求助10
22秒前
无情的水蓉完成签到,获得积分10
22秒前
Johnathan完成签到,获得积分10
23秒前
皮雁子发布了新的文献求助30
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600