CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Minshan Jiang,Yongfei Zhu,Xuedian Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108047-108047 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108047
摘要

Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Raymond完成签到,获得积分0
刚刚
刚刚
木易羊完成签到,获得积分10
1秒前
Splaink完成签到 ,获得积分10
1秒前
zxb完成签到,获得积分10
2秒前
玛卡巴子完成签到 ,获得积分10
3秒前
Kyogoku完成签到,获得积分10
3秒前
宋宋完成签到,获得积分10
3秒前
酷炫翠桃应助suanqi512采纳,获得10
4秒前
陈预立完成签到,获得积分10
5秒前
啥名都行发布了新的文献求助10
5秒前
buno应助荼荼采纳,获得10
5秒前
6秒前
CPUPPer发布了新的文献求助30
7秒前
阳光的晓刚完成签到,获得积分10
8秒前
8秒前
sciscisci完成签到,获得积分10
9秒前
tjfwg完成签到,获得积分10
9秒前
9秒前
10秒前
河里蹿发布了新的文献求助10
10秒前
10秒前
mx164应助科研通管家采纳,获得40
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
瑞_应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
氨基酸脱氨完成签到,获得积分10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
Yziii应助科研通管家采纳,获得20
11秒前
pluto应助科研通管家采纳,获得10
11秒前
wh1997完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257808
求助须知:如何正确求助?哪些是违规求助? 2899627
关于积分的说明 8306997
捐赠科研通 2568927
什么是DOI,文献DOI怎么找? 1395373
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630868