CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Minshan Jiang,Yongfei Zhu,Xuedian Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108047-108047 被引量:23
标识
DOI:10.1016/j.compbiomed.2024.108047
摘要

Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助tlotw41采纳,获得10
1秒前
等待的婴关注了科研通微信公众号
2秒前
DDT完成签到,获得积分10
2秒前
bkagyin应助狂暴战士采纳,获得10
3秒前
谨谨谨完成签到,获得积分10
3秒前
Akim应助李恩乐采纳,获得10
4秒前
55155255发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ecnu搬砖人完成签到,获得积分10
7秒前
KeyNes完成签到,获得积分10
7秒前
CipherSage应助慵懒的树采纳,获得10
7秒前
ironsilica完成签到,获得积分10
9秒前
9秒前
小天发布了新的文献求助10
9秒前
berg发布了新的文献求助10
9秒前
11秒前
11秒前
13秒前
14秒前
14秒前
15秒前
wwy727完成签到 ,获得积分10
16秒前
tlotw41发布了新的文献求助10
16秒前
夏雨微凉完成签到,获得积分10
17秒前
17秒前
大个应助无奈的鞋子采纳,获得10
18秒前
18秒前
hhhh发布了新的文献求助10
19秒前
super chan发布了新的文献求助10
19秒前
axiba发布了新的文献求助10
19秒前
彭于晏应助一直往前走采纳,获得10
19秒前
19秒前
19秒前
珂珂发布了新的文献求助50
20秒前
搜集达人应助江南采纳,获得10
21秒前
hai完成签到,获得积分10
21秒前
21秒前
情怀应助知然采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497