清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting

粒度 计算机科学 数据挖掘 图形 时态数据库 智能交通系统 理论计算机科学 操作系统 土木工程 工程类
作者
Wei Sang,Huiliang Zhang,Xianchang Kang,Ping Nie,Xin Meng,Benoît Boulet,Pei Sun
出处
期刊:Information Sciences [Elsevier]
卷期号:662: 120230-120230 被引量:2
标识
DOI:10.1016/j.ins.2024.120230
摘要

Traffic forecasting, as the cornerstone of the development of intelligent transportation systems, plays a crucial role in facilitating accurate control and management of urban traffic. By treating sensors as nodes in a road network, recent research on modeling complex spatial-temporal graph structures has achieved notable advancements in traffic forecasting. However, limited by the increasing number of sensors and recorded data points, most of the recent studies on spatial-temporal graph neural network (STGNN) research concentrate on aggregating short-term (e.g. recent one-hour) traffic history to predict future data. Furthermore, almost all previous STGNNs neglect to incorporate the cyclical patterns that appear in the traffic historical data. For example, the cyclical patterns of traffic on the same day or hour of each week can help improve the accuracy of future traffic predictions. In this paper, we propose a novel Dynamic Multi-Granularity Spatial-Temporal Graph Attention Network (DmgSTGAT) framework for traffic forecasting, which leverages multi-granularity spatial-temporal correlations across different time-scales and variables to efficiently consider cyclical patterns in traffic data. We also design effective temporal encoding and transformer encoding layers to produce meaningful multi-granularity sensor-level, day-level, hour-level, and point-level representations. The multi-granularity spatial-temporal graph attention network can use the produced representations to extract useful but sparsely distributed patterns accurately, which also avoids the influence of extra noise from the long-term history. Experimental results on four real-world traffic datasets show that DmgSTGAT can achieve state-of-the-art performance with the help of multi-granularity cyclical patterns compared with various recent baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Airi发布了新的文献求助10
9秒前
18秒前
23秒前
24秒前
27秒前
Ava应助Airi采纳,获得10
36秒前
Tiger发布了新的文献求助10
37秒前
Tiger完成签到,获得积分10
47秒前
1分钟前
imi完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
得咎发布了新的文献求助10
2分钟前
2分钟前
研友_8Y26PL完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
oscar完成签到,获得积分10
4分钟前
4分钟前
肆肆完成签到,获得积分10
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
4分钟前
muriel完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795355
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176