已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Expanding from unilateral to bilateral: A robust deep learning-based approach for predicting radiographic osteoarthritis progression

骨关节炎 医学 射线照相术 稳健性(进化) 物理疗法 放射科 病理 生物化学 化学 替代医学 基因
作者
Rui Yin,Hao Chen,Tianqi Tao,Kaibin Zhang,Guangxu Yang,Fajian Shi,Yiqiu Jiang,Jianchao Gui
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:32 (3): 338-347 被引量:4
标识
DOI:10.1016/j.joca.2023.11.022
摘要

To develop and validate a deep learning (DL) model for predicting osteoarthritis (OA) progression based on bilateral knee joint views.In this retrospective study, knee joints from bilateral posteroanterior knee radiographs of participants in the Osteoarthritis Initiative were analyzed. At baseline, participants were divided into testing set 1 and development set according to the different enrolled sites. The development set was further divided into a training set and a validation set in an 8:2 ratio for model development. At 48-month follow-up, eligible patients were formed testing set 2. The Bilateral Knee Neural Network (BikNet) was developed using bilateral views, with the knee to be predicted as the main view and the contralateral knee as the auxiliary view. DenseNet and ResNext were also trained and compared as the unilateral model. Two reader tests were conducted to evaluate the model's value in predicting incident OA.Totally 3583 participants were evaluated. The BikNet we proposed outperformed ResNext and DenseNet (all area under the curve [AUC] < 0.71, P < 0.001) with AUC values of 0.761 and 0.745 in testing sets 1 and 2, respectively. With assistance of the BikNet increased clinicians' sensitivity (from 28.1-63.2% to 42.1-68.4%) and specificity (from 57.4-83.4% to 64.1-87.5%) of incident OA prediction and improved inter-observer reliability.The DL model, constructed based on bilateral knee views, holds promise for enhancing the assessment of OA and demonstrates greater robustness during subsequent follow-up evaluations as compared with unilateral models. BikNet represents a potential tool or imaging biomarker for predicting OA progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小天完成签到,获得积分10
刚刚
Langsam完成签到,获得积分10
4秒前
5秒前
星火完成签到,获得积分10
5秒前
7秒前
完美笑翠完成签到,获得积分20
7秒前
8秒前
寄托完成签到 ,获得积分10
8秒前
小蘑菇应助Pharmer采纳,获得10
8秒前
传奇3应助Langsam采纳,获得10
8秒前
雾暮灬发布了新的文献求助10
13秒前
小彬完成签到 ,获得积分10
14秒前
16秒前
过时的白曼完成签到,获得积分10
20秒前
Langsam发布了新的文献求助10
20秒前
20秒前
笨笨的发布了新的文献求助10
21秒前
英俊的铭应助李桥溪采纳,获得10
23秒前
小蘑菇应助雾暮灬采纳,获得10
23秒前
ZZ关注了科研通微信公众号
24秒前
浅尝离白完成签到,获得积分0
24秒前
24秒前
Derek完成签到,获得积分0
25秒前
花酒发布了新的文献求助10
25秒前
星流xx完成签到 ,获得积分10
31秒前
32秒前
33秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得20
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
meimei完成签到 ,获得积分10
34秒前
35秒前
bkagyin应助科研通管家采纳,获得30
35秒前
m1nt完成签到,获得积分10
35秒前
天天快乐应助不方采纳,获得10
35秒前
DrLee完成签到,获得积分10
36秒前
sugarballer完成签到 ,获得积分10
36秒前
李桥溪发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150414
求助须知:如何正确求助?哪些是违规求助? 2801747
关于积分的说明 7845691
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727