Electron Penetration Effect of Ni Single Atom Boosting CO2 to CO in PH‐Universal Electrolytes

材料科学 Boosting(机器学习) 电解质 渗透(战争) Atom(片上系统) 电子 原子物理学 化学物理 纳米技术 物理化学 电极 物理 量子力学 化学 运筹学 机器学习 计算机科学 工程类 嵌入式系统
作者
Fangyuan Wang,Xingqi Han,Daoxiong Wu,Zhitong Wang,Xiaoqian Xiong,Jing Li,Gao Xiaohong,Guan Wang,Li Huo,Yingjie Hua,Chongtai Wang,Huan Wen,Qi Chen,Xinlong Tian,Peilin Deng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (23) 被引量:11
标识
DOI:10.1002/adfm.202314453
摘要

Abstract Electrocatalytic CO 2 reduction (ECR) powered by renewable electricity has attracted of wide attention because of its advantages to produce high‐value‐added chemicals and fuels. Additionally, ECR played a crucial role in addressing the challenge of excessive fossil fuel consumption caused by global warming. Herein, a unique armor structure with Ni nanoparticles coated by a carbon shell containing Ni─N─C (Ni─NP@Ni─SA) for industrial ECR to CO in pH‐universal electrolytes is designed. Ni─NP@Ni─SA catalyst exhibits ≈100% CO Faradaic efficiency, and CO partial current density can reach 500, 361, and 615 mA cm −2 in strong alkaline (pH 14), neutral (pH 7.2) and strong acidic (pH 1) electrolytes, respectively. Moreover, Ni─NP@Ni─SA can drive the rechargeable Zn‐CO 2 battery with a high power density of 3.45 mW cm −2 , and outstanding stability over 36 h. The structural characterizations and theoretical calculation together present that the electron penetration effect of Ni─NP@Ni─SA can strengthen the electronic enrichment state of Ni single atom, which facilitates the reaction kinetics of ECR by decreasing the formation energy barrier of key intermediate * COOH. This work pioneers a new design strategy to enhance the activity of single‐atom catalysts and seek high‐efficiency electrocatalysts for ECR in pH‐universal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻道之发布了新的文献求助10
刚刚
balabala完成签到,获得积分10
刚刚
sjc发布了新的文献求助10
刚刚
求助人员发布了新的文献求助10
1秒前
皮三问完成签到,获得积分10
1秒前
1秒前
ttrr完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6.1应助雨上悲采纳,获得10
1秒前
2秒前
2秒前
2秒前
今后应助童童采纳,获得30
2秒前
3秒前
在水一方应助隐形的星月采纳,获得10
4秒前
尘染发布了新的文献求助10
4秒前
氧化钙完成签到,获得积分20
5秒前
5秒前
5秒前
共享精神应助Vaeling采纳,获得10
5秒前
11完成签到,获得积分10
6秒前
田様应助陈一采纳,获得30
6秒前
7秒前
len完成签到,获得积分10
7秒前
7秒前
8秒前
chensiying完成签到 ,获得积分10
8秒前
思与省完成签到,获得积分10
8秒前
8秒前
9秒前
小胡发布了新的文献求助10
9秒前
11发布了新的文献求助10
9秒前
tylerguillam完成签到 ,获得积分10
10秒前
11秒前
小蘑菇应助浙江嘉兴采纳,获得10
11秒前
学术小白完成签到,获得积分10
11秒前
自然墨镜应助11采纳,获得10
11秒前
无花果应助盛天虹采纳,获得10
11秒前
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751492
求助须知:如何正确求助?哪些是违规求助? 5468644
关于积分的说明 15370160
捐赠科研通 4890643
什么是DOI,文献DOI怎么找? 2629816
邀请新用户注册赠送积分活动 1578002
关于科研通互助平台的介绍 1534196