Bearing fault feature extraction method: stochastic resonance-based negative entropy of square envelope spectrum

滚动轴承 振动 包络线(雷达) 声学 方位(导航) 计算机科学 熵(时间箭头) 信号(编程语言) 控制理论(社会学) 算法 人工智能 物理 电信 量子力学 程序设计语言 雷达 控制(管理)
作者
Haixin Zhao,Xiaomo Jiang,Bo Wang,Xueyu Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045102-045102
标识
DOI:10.1088/1361-6501/ad1872
摘要

Abstract The early identification of bearing defects has recently attracted increasing attention in the fields of condition monitoring and predictive maintenance because of the critical role of bearings on the reliability and safety of turbomachines. The weak features representing early faults in the vibration signals are often submerged in the environmental noise, which poses a major challenge for the early fault diagnosis of rolling bearings. This study proposes a negative entropy of the square envelope spectrum approach integrated with optimized stochastic resonance (SR)-based signal enhancement for accurate early defect detection of rolling element bearings. The proposed method considers the cyclostationarity and impulsivity of the raw signal, as well as its similarity with the enhanced signal, thus reinforcing the characteristic frequency while integrating the regularity of the raw signal to evaluate the SR performance. A comparison study with different existing methods using both numerical and experimental data was conducted to illustrate the effectiveness and accuracy of the proposed methodology for early defect detection of rolling element bearings in different locations. The results show that the proposed method improves the fault detection by 3.5 d earlier than other SR methods, and produces the best enhancement results for fault detection in the outer race, inner race, and rolling element of bearings, with the increase of characteristic frequency intensity coefficient by 126.3%, 118.1%, and 100.5% compared to traditional envelope signals, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
科研通AI5应助WOLF采纳,获得10
3秒前
5秒前
9秒前
10秒前
15秒前
zho应助谨慎的咖啡豆采纳,获得10
16秒前
16秒前
16秒前
zho应助谨慎的咖啡豆采纳,获得10
16秒前
16秒前
17秒前
Mufasa完成签到,获得积分10
21秒前
Doctor12th发布了新的文献求助10
21秒前
扭捏的扭捏完成签到,获得积分10
22秒前
22秒前
meini完成签到 ,获得积分10
22秒前
yueerww完成签到,获得积分10
23秒前
CL25发布了新的文献求助10
25秒前
25秒前
Dengdeng完成签到,获得积分20
26秒前
lavender13完成签到 ,获得积分10
27秒前
DE2022发布了新的文献求助10
27秒前
29秒前
Doctor12th完成签到,获得积分10
30秒前
30秒前
yyj发布了新的文献求助10
31秒前
33秒前
sigrid发布了新的文献求助10
35秒前
36秒前
脑洞疼应助鲲kun采纳,获得10
37秒前
科研通AI5应助洛苏采纳,获得10
37秒前
qx发布了新的文献求助10
38秒前
咕咕风发布了新的文献求助20
38秒前
38秒前
今后应助牛马自己push采纳,获得10
38秒前
40秒前
称心绮完成签到,获得积分10
40秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321329
关于积分的说明 10204919
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783