Cholesterol-modified prognostic nutritional index (CPNI) as an effective tool for assessing the nutrition status and predicting survival in patients with breast cancer

医学 接收机工作特性 乳腺癌 内科学 比例危险模型 肿瘤科 癌症 体质指数 营养不良
作者
Jinyu Shi,Tong Liu,Yi‐Zhong Ge,Chenan Liu,Qi Zhang,Hailun Xie,Guo‐Tian Ruan,Shiqi Lin,Xin Zheng,Yue Chen,Heyang Zhang,Mengmeng Song,Xiaowei Zhang,Chunlei Hu,Xiangrui Li,Ming Yang,Xiaoyue Liu,Li Deng,Hanping Shi
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12916-023-03225-7
摘要

Abstract Background Malnutrition is associated with poor overall survival (OS) in breast cancer patients; however, the most predictive nutritional indicators for the prognosis of patients with breast cancer are not well-established. This study aimed to compare the predictive effects of common nutritional indicators on OS and to refine existing nutritional indicators, thereby identifying a more effective nutritional evaluation indicator for predicting the prognosis in breast cancer patients. Methods This prospective study analyzed data from 776 breast cancer patients enrolled in the “Investigation on Nutritional Status and its Clinical Outcome of Common Cancers” (INSCOC) project, which was conducted in 40 hospitals in China. We used the time-dependent receiver operating characteristic curve (ROC), Kaplan–Meier survival curve, and Cox regression analysis to evaluate the predictive effects of several nutritional assessments. These assessments included the patient-generated subjective nutrition assessment (PGSGA), the global leadership initiative on malnutrition (GLIM), the controlling nutritional status (CONUT), the nutritional risk index (NRI), and the prognostic nutritional index (PNI). Utilizing machine learning, these nutritional indicators were screened through single-factor analysis, and relatively important variables were selected to modify the PNI. The modified PNI, termed the cholesterol-modified prognostic nutritional index (CPNI), was evaluated for its predictive effect on the prognosis of patients. Results Among the nutritional assessments (including PGSGA, GLIM, CONUT, NRI, and PNI), PNI showed the highest predictive ability for patient prognosis (time-dependent ROC = 0.58). CPNI, which evolved from PNI, emerged as the superior nutritional index for OS in breast cancer patients, with the time-dependent ROC of 0.65. It also acted as an independent risk factor for mortality ( p < 0.05). Moreover, the risk of malnutrition and mortality was observed to increase gradually among both premenopausal and postmenopausal age women, as well as among women categorized as non-overweight, overweight, and obese. Conclusions The CPNI proves to be an effective nutritional assessment tool for predicting the prognosis of patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达进完成签到,获得积分10
1秒前
QY完成签到 ,获得积分10
1秒前
Hu发布了新的文献求助10
1秒前
Roddickcn完成签到,获得积分10
3秒前
yyc2023完成签到,获得积分10
4秒前
昔莳完成签到,获得积分10
6秒前
8秒前
丘比特应助陈土土采纳,获得20
9秒前
冷傲迎梦完成签到,获得积分10
11秒前
花痴的电灯泡完成签到,获得积分10
11秒前
寻舟者发布了新的文献求助10
11秒前
可yi完成签到,获得积分20
12秒前
123完成签到,获得积分10
13秒前
程程发布了新的文献求助50
15秒前
WM应助科研通管家采纳,获得10
15秒前
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
WM应助科研通管家采纳,获得10
15秒前
WTH应助科研通管家采纳,获得50
16秒前
毛豆爸爸应助科研通管家采纳,获得20
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得30
16秒前
大个应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
WTH应助科研通管家采纳,获得10
16秒前
qin希望应助科研通管家采纳,获得10
16秒前
16秒前
Jack_hao完成签到,获得积分20
19秒前
霓娜酱完成签到 ,获得积分10
21秒前
priss111给风会代我伴你的求助进行了留言
23秒前
在水一方应助小李采纳,获得10
23秒前
24秒前
淡定白易完成签到,获得积分10
26秒前
Hu发布了新的文献求助10
27秒前
28秒前
满家归寻完成签到 ,获得积分10
31秒前
西西完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242003
求助须知:如何正确求助?哪些是违规求助? 2886360
关于积分的说明 8242812
捐赠科研通 2554998
什么是DOI,文献DOI怎么找? 1383171
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417