Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到,获得积分10
刚刚
Jasper应助小牛马采纳,获得10
1秒前
负责念梦发布了新的文献求助10
2秒前
YoufuWang完成签到,获得积分10
2秒前
2秒前
帅气莆发布了新的文献求助30
3秒前
溺爱王楚钦完成签到,获得积分10
3秒前
666完成签到,获得积分10
4秒前
5秒前
5秒前
独特觅翠发布了新的文献求助10
7秒前
苏yb完成签到,获得积分10
7秒前
酷波er应助迷路冬卉采纳,获得10
8秒前
8秒前
9秒前
打打应助不胜舟采纳,获得10
10秒前
罗园菲完成签到,获得积分20
10秒前
前进四19发布了新的文献求助30
11秒前
Pigeon完成签到,获得积分10
11秒前
11秒前
负责念梦完成签到,获得积分10
12秒前
qqqq22完成签到,获得积分10
12秒前
sen完成签到,获得积分10
12秒前
Owen应助CIOOICO1采纳,获得10
13秒前
AAAA发布了新的文献求助10
13秒前
17秒前
Fortune应助Eu采纳,获得10
18秒前
淡定的乐巧完成签到,获得积分10
18秒前
19秒前
shuijiabing完成签到,获得积分10
21秒前
21秒前
123发布了新的文献求助20
21秒前
健忘捕完成签到,获得积分10
21秒前
福尔丘完成签到,获得积分10
22秒前
YY完成签到,获得积分10
22秒前
ling完成签到,获得积分10
23秒前
神猪无敌完成签到,获得积分10
23秒前
Owen应助独特觅翠采纳,获得10
24秒前
AAAA完成签到,获得积分20
25秒前
英俊的铭应助夫昂采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215156
求助须知:如何正确求助?哪些是违规求助? 4390335
关于积分的说明 13669629
捐赠科研通 4252050
什么是DOI,文献DOI怎么找? 2332987
邀请新用户注册赠送积分活动 1330600
关于科研通互助平台的介绍 1284361