Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan完成签到,获得积分10
刚刚
xue完成签到,获得积分10
1秒前
金秋完成签到,获得积分10
1秒前
ding应助77MM采纳,获得30
2秒前
得意黑发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
6秒前
科研通AI6应助画画采纳,获得30
7秒前
茗牌棉花完成签到,获得积分10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
李艾尔关注了科研通微信公众号
10秒前
TOGETHERXYZ关注了科研通微信公众号
10秒前
10秒前
完美世界应助周周采纳,获得10
10秒前
zzz发布了新的文献求助10
10秒前
11秒前
大个应助董晨颖采纳,获得10
11秒前
无花果应助得意黑采纳,获得10
12秒前
12秒前
JamesPei应助shy盼望sky采纳,获得10
12秒前
13秒前
结实的白开水完成签到,获得积分20
13秒前
orixero应助猪猪hero采纳,获得10
13秒前
CipherSage应助嘻嘻采纳,获得10
14秒前
14秒前
LL完成签到,获得积分10
14秒前
14秒前
不喜发布了新的文献求助10
15秒前
15秒前
16秒前
思源应助玲子7采纳,获得50
17秒前
vvz完成签到,获得积分10
17秒前
仿生躯壳发布了新的文献求助10
17秒前
Journey完成签到,获得积分10
17秒前
无花果应助还单身的含烟采纳,获得10
18秒前
19秒前
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788