Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Propitious发布了新的文献求助10
1秒前
2秒前
坦率书竹发布了新的文献求助10
4秒前
百里幻竹发布了新的文献求助10
4秒前
NOVA应助Shirely采纳,获得10
4秒前
英姑应助Shirely采纳,获得10
4秒前
CodeCraft应助XMY147305采纳,获得10
5秒前
Ffffff发布了新的文献求助10
5秒前
情怀应助JD采纳,获得10
5秒前
6秒前
研友_VZG7GZ应助疑夕采纳,获得10
6秒前
沙新镇完成签到,获得积分10
6秒前
涂琳娜发布了新的文献求助10
7秒前
pipi完成签到 ,获得积分10
7秒前
Abc发布了新的文献求助20
7秒前
7秒前
8秒前
浮游应助小苏采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
所所应助77采纳,获得10
11秒前
Zym张迎濛完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助坦率书竹采纳,获得10
12秒前
13秒前
13秒前
万能图书馆应助笑一笑采纳,获得10
14秒前
14秒前
淘气鬼爱吃糖完成签到,获得积分10
15秒前
17秒前
叫我学弟完成签到 ,获得积分10
17秒前
完美世界应助罗翊彰采纳,获得10
17秒前
所所应助Wacenatree采纳,获得10
18秒前
在水一方应助靖柔采纳,获得10
18秒前
小梨完成签到,获得积分10
18秒前
18秒前
追寻鞋垫发布了新的文献求助10
19秒前
二六发布了新的文献求助10
20秒前
JD发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助100
22秒前
搜集达人应助苗苗采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896145
求助须知:如何正确求助?哪些是违规求助? 4177840
关于积分的说明 12969394
捐赠科研通 3941069
什么是DOI,文献DOI怎么找? 2162084
邀请新用户注册赠送积分活动 1180518
关于科研通互助平台的介绍 1086076