Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助Evander采纳,获得10
刚刚
刚刚
JamesPei应助图图采纳,获得10
1秒前
打打应助干净的尔柳采纳,获得10
1秒前
单薄的英姑完成签到,获得积分10
1秒前
张子怡发布了新的文献求助10
1秒前
李健的小迷弟应助孙颖采纳,获得10
1秒前
稀里哗啦完成签到,获得积分10
2秒前
xiao发布了新的文献求助10
2秒前
善学以致用应助leemonster采纳,获得10
2秒前
可靠笑容发布了新的文献求助10
3秒前
4秒前
阿奶完成签到,获得积分10
5秒前
科研一路绿灯完成签到,获得积分10
5秒前
小猪完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
思源应助ff采纳,获得10
7秒前
8秒前
苗条的向雪完成签到 ,获得积分10
9秒前
SciGPT应助M跃采纳,获得10
10秒前
勤奋太君发布了新的文献求助20
11秒前
昏睡的保温杯完成签到,获得积分10
11秒前
JamesPei应助典雅的纸飞机采纳,获得10
11秒前
Evander发布了新的文献求助10
11秒前
凡千灵溪完成签到 ,获得积分10
11秒前
ding应助小高爱学习采纳,获得10
12秒前
孤独凝芙完成签到,获得积分20
12秒前
aldehyde应助xiao采纳,获得10
13秒前
MYunn完成签到,获得积分10
15秒前
16秒前
16秒前
小药丸完成签到 ,获得积分10
16秒前
难过白易完成签到,获得积分10
16秒前
科研通AI2S应助虎虎采纳,获得10
18秒前
zzsl发布了新的文献求助10
19秒前
从容的完成签到 ,获得积分10
19秒前
19秒前
敏er完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869