Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小白发布了新的文献求助10
1秒前
zino完成签到,获得积分10
1秒前
zk001完成签到,获得积分20
1秒前
Fairy发布了新的文献求助30
1秒前
chandangfo发布了新的文献求助10
1秒前
阿敬完成签到,获得积分10
2秒前
3秒前
华仔应助xuanhui采纳,获得10
3秒前
朱朱完成签到,获得积分10
3秒前
长岁完成签到 ,获得积分10
3秒前
wsw关注了科研通微信公众号
3秒前
4秒前
ZhaoY发布了新的文献求助10
4秒前
个性擎发布了新的文献求助10
4秒前
星辰大海应助意而往南飞采纳,获得10
5秒前
Cheney完成签到,获得积分10
5秒前
LG发布了新的文献求助10
5秒前
微笑正豪完成签到,获得积分10
6秒前
lhx完成签到,获得积分10
6秒前
6秒前
反方向的枫完成签到,获得积分10
7秒前
无限老三完成签到,获得积分10
7秒前
小蓝完成签到,获得积分10
7秒前
昏睡的蟠桃应助NaCe1采纳,获得30
8秒前
烟花应助jiojio采纳,获得10
8秒前
咯咚完成签到 ,获得积分10
8秒前
默默的彩虹完成签到,获得积分10
9秒前
Eric完成签到,获得积分10
10秒前
11秒前
三七完成签到,获得积分10
11秒前
星辰大海应助泰裤辣采纳,获得10
11秒前
寒冷的帆布鞋完成签到,获得积分20
12秒前
雪妮儿完成签到,获得积分10
12秒前
12秒前
伟大人物发布了新的文献求助10
13秒前
我是老大应助小白采纳,获得10
13秒前
吹梦到西洲完成签到,获得积分10
13秒前
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365