MSFNet: A Multi-Scale Space-Time Frequency Fusion Network for Motor Imagery EEG Classification

计算机科学 人工智能 模式识别(心理学) 运动表象 脑-机接口 特征提取 脑电图 科恩卡帕 预处理器 比例(比率) 融合 机器学习 哲学 物理 精神科 量子力学 语言学 心理学
作者
Chang Wang,Yang‐Chang Wu,Chen Wang,Yaning Ren,Jiefen Shen,Ting Pang,Chee Seng Chan,Wenjie Ren,Yi Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 8325-8336 被引量:1
标识
DOI:10.1109/access.2024.3351204
摘要

Motor imagery electroencephalogram (MI-EEG) classification is essential in brain-computer interface (BCI), and many classification methods have been proposed recently. However, the MI-EEG classification accuracy of the public dataset still has room for improvement, and designing a suitable model to extract and fuse the multi-modality features efficiently is crucial. In this study, we proposed a Multi-scale Space-time Frequency fusion Network (MSFNet) to improve the MI-EEG classification accuracy. The MSFNet comprises data acquisition and preprocessing, multi-scale time-conv fusion unit, multi-scale frequency-conv fusion unit, feature fusion, and classification. Multi-scale time-conv fusion unit can extract multi-scale spatiotemporal features, and multi-scale frequency-conv fusion unit can extract five frequency sub-band features. These two features were concatenated to complete the multi-modality features fusion, and MI-EEG was classified. Average accuracy, kappa value, and F1 score were adopted as the evaluation metric, and BCI Competition 2008 IV 2a and High Gamma datasets were employed to demonstrate the effectiveness of the MSFNet. The superiority of this proposed model was demonstrated by comparison against the state-of-the-art methods, and the classification result is the highest. Overall, we achieved an average accuracy of 80.47%, kappa value of 0.783, and F1 score of 0.743 in the BCI Competition 2008 IV 2a dataset, and we achieved an average accuracy of 93.56%, kappa value of 0.933, and F1 score of 0.915 in High Gamma dataset. This model realized the extraction and efficient fusion of spatiotemporal and frequency domain features and obtained the high-precision MI-EEG classification, which has an important application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lilian完成签到,获得积分20
1秒前
欢呼的凌兰完成签到,获得积分10
2秒前
XRenaissance完成签到,获得积分10
2秒前
蓝天完成签到,获得积分10
3秒前
朱朱发布了新的文献求助10
4秒前
WZH123456完成签到,获得积分10
5秒前
刘晶发布了新的文献求助30
5秒前
6秒前
仚屳完成签到,获得积分10
6秒前
tmq完成签到,获得积分20
8秒前
10秒前
七七八八完成签到,获得积分10
10秒前
仚屳发布了新的文献求助10
12秒前
xu完成签到,获得积分10
13秒前
15秒前
zhuling发布了新的文献求助10
16秒前
16秒前
jason完成签到,获得积分10
17秒前
DW完成签到,获得积分10
18秒前
18秒前
爆米花应助懵懂的绿真采纳,获得50
20秒前
time_xv发布了新的文献求助10
21秒前
黑妖完成签到,获得积分10
22秒前
23秒前
26秒前
28秒前
zhuling完成签到,获得积分10
30秒前
YFH发布了新的文献求助10
38秒前
40秒前
40秒前
liuzr发布了新的文献求助20
42秒前
会飞的鱼完成签到,获得积分10
43秒前
bkagyin应助乐生采纳,获得10
43秒前
44秒前
44秒前
欣慰的立果完成签到 ,获得积分10
45秒前
李昀睿发布了新的文献求助10
46秒前
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967