MSFNet: A Multi-Scale Space-Time Frequency Fusion Network for Motor Imagery EEG Classification

计算机科学 人工智能 模式识别(心理学) 运动表象 脑-机接口 特征提取 脑电图 科恩卡帕 预处理器 比例(比率) 融合 机器学习 心理学 语言学 物理 哲学 量子力学 精神科
作者
Chang Wang,Yang‐Chang Wu,Chen Wang,Yaning Ren,Jiefen Shen,Ting Pang,Chee Seng Chan,Wenjie Ren,Yi Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 8325-8336 被引量:1
标识
DOI:10.1109/access.2024.3351204
摘要

Motor imagery electroencephalogram (MI-EEG) classification is essential in brain-computer interface (BCI), and many classification methods have been proposed recently. However, the MI-EEG classification accuracy of the public dataset still has room for improvement, and designing a suitable model to extract and fuse the multi-modality features efficiently is crucial. In this study, we proposed a Multi-scale Space-time Frequency fusion Network (MSFNet) to improve the MI-EEG classification accuracy. The MSFNet comprises data acquisition and preprocessing, multi-scale time-conv fusion unit, multi-scale frequency-conv fusion unit, feature fusion, and classification. Multi-scale time-conv fusion unit can extract multi-scale spatiotemporal features, and multi-scale frequency-conv fusion unit can extract five frequency sub-band features. These two features were concatenated to complete the multi-modality features fusion, and MI-EEG was classified. Average accuracy, kappa value, and F1 score were adopted as the evaluation metric, and BCI Competition 2008 IV 2a and High Gamma datasets were employed to demonstrate the effectiveness of the MSFNet. The superiority of this proposed model was demonstrated by comparison against the state-of-the-art methods, and the classification result is the highest. Overall, we achieved an average accuracy of 80.47%, kappa value of 0.783, and F1 score of 0.743 in the BCI Competition 2008 IV 2a dataset, and we achieved an average accuracy of 93.56%, kappa value of 0.933, and F1 score of 0.915 in High Gamma dataset. This model realized the extraction and efficient fusion of spatiotemporal and frequency domain features and obtained the high-precision MI-EEG classification, which has an important application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常大有发布了新的文献求助10
1秒前
小遇完成签到 ,获得积分10
2秒前
桐桐应助Diane采纳,获得20
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
希望天下0贩的0应助marco采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
tuya发布了新的文献求助20
7秒前
7秒前
crise完成签到,获得积分20
8秒前
10秒前
捉一只小鱼完成签到,获得积分10
10秒前
xux894发布了新的文献求助10
10秒前
恋雅颖月发布了新的文献求助10
11秒前
wd完成签到,获得积分10
11秒前
心落失发布了新的文献求助10
11秒前
13秒前
天天快乐应助Nelson_Foo采纳,获得10
13秒前
戏言121发布了新的文献求助10
13秒前
科研小垃圾完成签到,获得积分10
14秒前
14秒前
踏实从雪完成签到 ,获得积分10
14秒前
15秒前
Gmute完成签到,获得积分20
16秒前
Xe发布了新的文献求助10
17秒前
崔崔XY完成签到 ,获得积分10
17秒前
在睡觉关注了科研通微信公众号
17秒前
17秒前
17秒前
CipherSage应助banbieshenlu采纳,获得20
17秒前
杳鸢应助戏言121采纳,获得10
17秒前
18秒前
18秒前
20秒前
alala发布了新的文献求助10
20秒前
李明发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180