A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions

计算机科学 深度学习 人工智能 疾病 数据科学 数据库 医学 病理
作者
Nan Sheng,Xuping Xie,Yan Wang,Lan Huang,Shuangquan Zhang,Ling Gao,Hao Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 328-347 被引量:8
标识
DOI:10.1109/tcbb.2024.3351752
摘要

MicroRNAs (miRNAs) are an important class of non-coding RNAs that play an essential role in the occurrence and development of various diseases. Identifying the potential miRNA-disease associations (MDAs) can be beneficial in understanding disease pathogenesis. Traditional laboratory experiments are expensive and time-consuming. Computational models have enabled systematic large-scale prediction of potential MDAs, greatly improving the research efficiency. With recent advances in deep learning, it has become an attractive and powerful technique for uncovering novel MDAs. Consequently, numerous MDA prediction methods based on deep learning have emerged. In this review, we first summarize publicly available databases related to miRNAs and diseases for MDA prediction. Next, we outline commonly used miRNA and disease similarity calculation and integration methods. Then, we comprehensively review the 48 existing deep learning-based MDA computation methods, categorizing them into classical deep learning and graph neural network-based techniques. Subsequently, we investigate the evaluation methods and metrics that are frequently used to assess MDA prediction performance. Finally, we discuss the performance trends of different computational methods, point out some problems in current research, and propose 9 potential future research directions. Data resources and recent advances in MDA prediction methods are summarized in the GitHub repository https://github.com/sheng-n/DL-miRNA-disease-association-methods .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kelvin发布了新的文献求助10
2秒前
bucai完成签到,获得积分10
3秒前
曾经以亦发布了新的文献求助30
4秒前
5秒前
5秒前
正直画笔完成签到 ,获得积分10
6秒前
LLL完成签到,获得积分10
6秒前
Yang完成签到 ,获得积分10
7秒前
爆米花应助贪玩的网络采纳,获得10
7秒前
zhangyu应助ting采纳,获得10
7秒前
斯文败类应助doby采纳,获得10
8秒前
71发布了新的文献求助30
10秒前
木cheng发布了新的文献求助10
10秒前
凯文完成签到,获得积分10
12秒前
小小富应助有足量NaCl采纳,获得10
14秒前
CodeCraft应助71采纳,获得10
15秒前
16秒前
在水一方应助泉眼采纳,获得10
18秒前
HaonanZhang完成签到 ,获得积分10
19秒前
南瓜饼完成签到,获得积分10
20秒前
doby发布了新的文献求助10
20秒前
恋雅颖月应助猴哥采纳,获得10
20秒前
tian发布了新的文献求助10
21秒前
21秒前
loyal完成签到,获得积分20
21秒前
24秒前
桐桐应助大苗采纳,获得10
24秒前
neao完成签到 ,获得积分10
24秒前
俭朴的身影完成签到,获得积分10
25秒前
独特元蝶发布了新的文献求助10
25秒前
26秒前
26秒前
坐亭下发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
wanglong0118发布了新的文献求助10
30秒前
bkagyin应助无情向薇采纳,获得10
30秒前
李健的小迷弟应助Stroeve采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545