A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions

计算机科学 深度学习 人工智能 疾病 数据科学 数据库 医学 病理
作者
Nan Sheng,Xuping Xie,Yan Wang,Lan Huang,Shuangquan Zhang,Ling Gao,Hao Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 328-347 被引量:6
标识
DOI:10.1109/tcbb.2024.3351752
摘要

MicroRNAs (miRNAs) are an important class of non-coding RNAs that play an essential role in the occurrence and development of various diseases. Identifying the potential miRNA-disease associations (MDAs) can be beneficial in understanding disease pathogenesis. Traditional laboratory experiments are expensive and time-consuming. Computational models have enabled systematic large-scale prediction of potential MDAs, greatly improving the research efficiency. With recent advances in deep learning, it has become an attractive and powerful technique for uncovering novel MDAs. Consequently, numerous MDA prediction methods based on deep learning have emerged. In this review, we first summarize publicly available databases related to miRNAs and diseases for MDA prediction. Next, we outline commonly used miRNA and disease similarity calculation and integration methods. Then, we comprehensively review the 48 existing deep learning-based MDA computation methods, categorizing them into classical deep learning and graph neural network-based techniques. Subsequently, we investigate the evaluation methods and metrics that are frequently used to assess MDA prediction performance. Finally, we discuss the performance trends of different computational methods, point out some problems in current research, and propose 9 potential future research directions. Data resources and recent advances in MDA prediction methods are summarized in the GitHub repository https://github.com/sheng-n/DL-miRNA-disease-association-methods .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZOLEI发布了新的文献求助10
刚刚
2248388622发布了新的文献求助10
1秒前
1秒前
不将就4179完成签到 ,获得积分20
1秒前
8R60d8应助shufessm采纳,获得10
2秒前
艺馨发布了新的文献求助10
3秒前
3秒前
传奇3应助迷路藏鸟采纳,获得10
3秒前
炙热芝发布了新的文献求助10
4秒前
点点点完成签到,获得积分10
5秒前
bkagyin应助愉快的银耳汤采纳,获得10
5秒前
hwasaa完成签到,获得积分10
6秒前
7秒前
英俊的铭应助CC采纳,获得30
7秒前
7秒前
阿皮完成签到,获得积分10
9秒前
9秒前
大左完成签到,获得积分10
10秒前
10秒前
10秒前
longchb完成签到,获得积分10
13秒前
13秒前
13秒前
yan发布了新的文献求助10
14秒前
w2503发布了新的文献求助30
14秒前
bxj发布了新的文献求助10
15秒前
15秒前
董石美完成签到,获得积分10
16秒前
Gauss应助W.X.采纳,获得30
17秒前
心动nofear完成签到 ,获得积分20
17秒前
幸福大碗完成签到,获得积分10
18秒前
zmx完成签到 ,获得积分10
19秒前
豆豆完成签到 ,获得积分10
20秒前
20秒前
可爱的函函应助YUKI采纳,获得10
21秒前
21秒前
21秒前
22秒前
23秒前
酷酷完成签到,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225930
求助须知:如何正确求助?哪些是违规求助? 2874606
关于积分的说明 8187098
捐赠科研通 2541674
什么是DOI,文献DOI怎么找? 1372312
科研通“疑难数据库(出版商)”最低求助积分说明 646458
邀请新用户注册赠送积分活动 620753