摩擦电效应
材料科学
机械容积
聚二甲基硅氧烷
硫化锌
荧光粉
复合材料
涂层
聚合物
化学工程
锌
光电子学
冶金
工程类
作者
Gyudong Lee,Seongkyu Song,Woo Hyeon Jeong,Cheoljae Lee,June‐Seo Kim,Ju‐Hyuck Lee,Jongmin Choi,Hyosung Choi,Younghoon Kim,Sung Jun Lim,Soon Moon Jeong
出处
期刊:Small
[Wiley]
日期:2024-01-07
卷期号:20 (17)
被引量:8
标识
DOI:10.1002/smll.202307089
摘要
Abstract Composites comprising copper‐doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu–PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle–PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu–PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor–polymer elastic composites (interfacial triboelectric field‐driven alternating‐current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu–PDMS systems) with bright and durable ML.
科研通智能强力驱动
Strongly Powered by AbleSci AI