Enhanced peroxymonosulfate-based Fenton-like degradation performance by confined radical activation path and non-radical activation path inside yolk@shell nanoreactor

纳米反应器 降级(电信) 化学 自催化 化学工程 碳纤维 光化学 材料科学 催化作用 复合材料 有机化学 计算机科学 电信 工程类 复合数
作者
Wenqi Ding,Yanqiu Zhang,Wanting Hui,Yaodan Cao,Shouchun Ma,Maoquan Wu,Tongjie Yao,Baifu Xin,Jie Wu
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:985: 173992-173992 被引量:4
标识
DOI:10.1016/j.jallcom.2024.173992
摘要

In peroxymonosulfate (PMS)-based Fenton-like reaction, there were two pathways for PMS activation: radical path on transition metal surface and non-radical path on heteroatom-doped carbon surface. In this work, CoS2/nitrogen-atom doped carbon (NC)@SiO2 yolk@shell nanoreactor was designed, on CoS2/NC surface, these two paths performed parallelly inside the nanoreactor, leading to an accelerated tetracycline degradation rate. 90.9% of removal efficiency was realized within 15 min, much higher than the reference samples, and the advantages of yolk@shell nanoreactor were illustrated in detail. Moreover, benefiting from the SiO2 shell protection, the leached cobalt ion was only 0.27 mg/L, which was 1/20 of the reference CoS2/NC without SiO2 shell. During the mechanism study, the two activation paths were identified by electron paramagnetic resonance tests, radical trapping experiments and electrochemical tests, where the SO4•- and 1O2 were responsible for tetracycline (TC) degradation. This study provided a new strategy to simultaneously accelerate radical activation path and non-radical activation path by using the yolk@shell nanoreactor, and it might inspire other high efficient catalyst design for PMS-based Fenton-like reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴陈完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助wugkazh采纳,获得30
2秒前
萧寒发布了新的文献求助10
2秒前
2秒前
manbo发布了新的文献求助10
2秒前
WYP完成签到,获得积分10
2秒前
无谓完成签到,获得积分10
3秒前
3秒前
青mu发布了新的文献求助10
4秒前
现代的寻雪完成签到,获得积分10
5秒前
immortel发布了新的文献求助10
5秒前
6秒前
科研狗发布了新的文献求助10
6秒前
6秒前
7秒前
汤纪宇完成签到,获得积分10
8秒前
8秒前
8秒前
活力的小小完成签到,获得积分10
9秒前
zhy完成签到,获得积分10
10秒前
一一发布了新的文献求助10
11秒前
shukq发布了新的文献求助10
12秒前
GinT0nic发布了新的文献求助10
12秒前
感动水杯发布了新的文献求助20
12秒前
WASD完成签到,获得积分10
14秒前
liuttinn完成签到,获得积分10
15秒前
嘻嘻完成签到,获得积分10
15秒前
16秒前
小二郎应助口香糖采纳,获得10
16秒前
念梦发布了新的文献求助10
17秒前
聪明夏波发布了新的文献求助30
17秒前
LGH发布了新的文献求助10
19秒前
青葱鱼块完成签到 ,获得积分10
19秒前
19秒前
Hello应助现代的寻雪采纳,获得10
20秒前
21秒前
shukq发布了新的文献求助10
21秒前
鱼鸭梨完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241