Multi-view representation learning for tabular data integration using inter-feature relationships

计算机科学 数据挖掘 特征(语言学) 人工智能 特征学习 匹配(统计) 模式识别(心理学) 单变量 机器学习 多元统计 数学 语言学 统计 哲学
作者
Sandhya Tripathi,Bradley A. Fritz,Mohamed Abdelhack,Michael S. Avidan,Yixin Chen,Christopher R. King
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104602-104602 被引量:2
标识
DOI:10.1016/j.jbi.2024.104602
摘要

An applied problem facing all areas of data science is harmonizing data sources. Joining data from multiple origins with unmapped and only partially overlapping features is a prerequisite to developing and testing robust, generalizable algorithms, especially in healthcare. This integrating is usually resolved using meta-data such as feature names, which may be unavailable or ambiguous. Our goal is to design methods that create a mapping between structured tabular datasets derived from electronic health records independent of meta-data. We evaluate methods in the challenging case of numeric features without reliable and distinctive univariate summaries, such as nearly Gaussian and binary features. We assume that a small set of features are a priori mapped between two datasets, which share unknown identical features and possibly many unrelated features. Inter-feature relationships are the main source of identification which we expect. We compare the performance of contrastive learning methods for feature representations, novel partial auto-encoders, mutual-information graph optimizers, and simple statistical baselines on simulated data, public datasets, the MIMIC-III medical-record changeover, and perioperative records from before and after a medical-record system change. Performance was evaluated using both mapping of identical features and reconstruction accuracy of examples in the format of the other dataset. Contrastive learning-based methods overall performed the best, often substantially beating the literature baseline in matching and reconstruction, especially in the more challenging real data experiments. Partial auto-encoder methods showed on-par matching with contrastive methods in all synthetic and some real datasets, along with good reconstruction. However, the statistical method we created performed reasonably well in many cases, with much less dependence on hyperparameter tuning. When validating feature match output in the EHR dataset we found that some mistakes were actually a surrogate or related feature as reviewed by two subject matter experts. In simulation studies and real-world examples, we find that inter-feature relationships are effective at identifying matching or closely related features across tabular datasets when meta-data is not available. Decoder architectures are also reasonably effective at imputing features without an exact match.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助壮观雅容采纳,获得10
刚刚
超级的雨完成签到,获得积分10
1秒前
JamesPei应助zz采纳,获得10
1秒前
1秒前
芝士酱完成签到,获得积分10
2秒前
2秒前
青梅绿茶完成签到,获得积分10
3秒前
SciGPT应助巴比龙采纳,获得10
3秒前
凌L发布了新的文献求助10
3秒前
3秒前
3秒前
今后应助zency采纳,获得10
3秒前
汉堡包应助糖糖采纳,获得10
3秒前
PU聚氨酯完成签到,获得积分10
4秒前
冰冰双双完成签到,获得积分10
4秒前
linyh完成签到,获得积分20
4秒前
且慢应助啦啦啦啦采纳,获得20
4秒前
赘婿应助一杯冰博克采纳,获得30
4秒前
懒骨头兄应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
海角浪子完成签到 ,获得积分10
5秒前
打打应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
只争朝夕应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
甜美无剑应助科研通管家采纳,获得50
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
夜将尽发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
认真野狼完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302