已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-view representation learning for tabular data integration using inter-feature relationships

计算机科学 数据挖掘 特征(语言学) 人工智能 特征学习 匹配(统计) 模式识别(心理学) 单变量 机器学习 多元统计 数学 语言学 统计 哲学
作者
Sandhya Tripathi,Bradley A. Fritz,Mohamed Abdelhack,Michael S. Avidan,Yixin Chen,Christopher R. King
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:: 104602-104602 被引量:2
标识
DOI:10.1016/j.jbi.2024.104602
摘要

An applied problem facing all areas of data science is harmonizing data sources. Joining data from multiple origins with unmapped and only partially overlapping features is a prerequisite to developing and testing robust, generalizable algorithms, especially in healthcare. This integrating is usually resolved using meta-data such as feature names, which may be unavailable or ambiguous. Our goal is to design methods that create a mapping between structured tabular datasets derived from electronic health records independent of meta-data. We evaluate methods in the challenging case of numeric features without reliable and distinctive univariate summaries, such as nearly Gaussian and binary features. We assume that a small set of features are a priori mapped between two datasets, which share unknown identical features and possibly many unrelated features. Inter-feature relationships are the main source of identification which we expect. We compare the performance of contrastive learning methods for feature representations, novel partial auto-encoders, mutual-information graph optimizers, and simple statistical baselines on simulated data, public datasets, the MIMIC-III medical-record changeover, and perioperative records from before and after a medical-record system change. Performance was evaluated using both mapping of identical features and reconstruction accuracy of examples in the format of the other dataset. Contrastive learning-based methods overall performed the best, often substantially beating the literature baseline in matching and reconstruction, especially in the more challenging real data experiments. Partial auto-encoder methods showed on-par matching with contrastive methods in all synthetic and some real datasets, along with good reconstruction. However, the statistical method we created performed reasonably well in many cases, with much less dependence on hyperparameter tuning. When validating feature match output in the EHR dataset we found that some mistakes were actually a surrogate or related feature as reviewed by two subject matter experts. In simulation studies and real-world examples, we find that inter-feature relationships are effective at identifying matching or closely related features across tabular datasets when meta-data is not available. Decoder architectures are also reasonably effective at imputing features without an exact match.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助nikki采纳,获得20
2秒前
5秒前
曾经如是完成签到,获得积分10
5秒前
jimmy完成签到,获得积分10
5秒前
7秒前
李梦如完成签到,获得积分20
7秒前
9秒前
舒适的一凤完成签到 ,获得积分10
9秒前
Orange应助何何何何何采纳,获得10
10秒前
10秒前
10秒前
希望天下0贩的0应助诺一44采纳,获得10
10秒前
10秒前
12秒前
jimmy发布了新的文献求助10
13秒前
陈梅红完成签到 ,获得积分10
14秒前
momo123完成签到 ,获得积分10
14秒前
15秒前
梨小7完成签到,获得积分10
16秒前
赘婿应助早晚炸了学校采纳,获得10
17秒前
17秒前
18秒前
张张完成签到,获得积分10
19秒前
Adzuki0812发布了新的文献求助30
20秒前
言论完成签到,获得积分10
22秒前
23秒前
24秒前
爱笑小笼包完成签到,获得积分10
24秒前
GaoChenxi完成签到 ,获得积分10
25秒前
李健的小迷弟应助张之静采纳,获得10
26秒前
FashionBoy应助吉他平方采纳,获得10
27秒前
27秒前
28秒前
CrazyLion完成签到,获得积分10
29秒前
科目三应助李梦如采纳,获得10
29秒前
米饭多加水完成签到,获得积分10
29秒前
30秒前
31秒前
nikki完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744