Multi-view representation learning for tabular data integration using inter-feature relationships

计算机科学 数据挖掘 特征(语言学) 人工智能 特征学习 匹配(统计) 模式识别(心理学) 单变量 机器学习 多元统计 哲学 语言学 统计 数学
作者
Sandhya Tripathi,Bradley A. Fritz,Mohamed Abdelhack,Michael S. Avidan,Yixin Chen,Christopher R. King
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:: 104602-104602 被引量:2
标识
DOI:10.1016/j.jbi.2024.104602
摘要

An applied problem facing all areas of data science is harmonizing data sources. Joining data from multiple origins with unmapped and only partially overlapping features is a prerequisite to developing and testing robust, generalizable algorithms, especially in healthcare. This integrating is usually resolved using meta-data such as feature names, which may be unavailable or ambiguous. Our goal is to design methods that create a mapping between structured tabular datasets derived from electronic health records independent of meta-data. We evaluate methods in the challenging case of numeric features without reliable and distinctive univariate summaries, such as nearly Gaussian and binary features. We assume that a small set of features are a priori mapped between two datasets, which share unknown identical features and possibly many unrelated features. Inter-feature relationships are the main source of identification which we expect. We compare the performance of contrastive learning methods for feature representations, novel partial auto-encoders, mutual-information graph optimizers, and simple statistical baselines on simulated data, public datasets, the MIMIC-III medical-record changeover, and perioperative records from before and after a medical-record system change. Performance was evaluated using both mapping of identical features and reconstruction accuracy of examples in the format of the other dataset. Contrastive learning-based methods overall performed the best, often substantially beating the literature baseline in matching and reconstruction, especially in the more challenging real data experiments. Partial auto-encoder methods showed on-par matching with contrastive methods in all synthetic and some real datasets, along with good reconstruction. However, the statistical method we created performed reasonably well in many cases, with much less dependence on hyperparameter tuning. When validating feature match output in the EHR dataset we found that some mistakes were actually a surrogate or related feature as reviewed by two subject matter experts. In simulation studies and real-world examples, we find that inter-feature relationships are effective at identifying matching or closely related features across tabular datasets when meta-data is not available. Decoder architectures are also reasonably effective at imputing features without an exact match.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺剑愁完成签到,获得积分10
2秒前
2秒前
turbohuan发布了新的文献求助10
3秒前
思维隋发布了新的文献求助10
5秒前
kaneki发布了新的文献求助10
6秒前
淡然冬灵发布了新的文献求助10
7秒前
7秒前
正直的鸿完成签到,获得积分10
7秒前
小马甲应助焱曦采纳,获得10
8秒前
CodeCraft应助Dr. LJ采纳,获得10
8秒前
科研通AI5应助满意的世界采纳,获得10
8秒前
在水一方应助QYPANG采纳,获得10
9秒前
panda完成签到,获得积分10
9秒前
科研达人发布了新的文献求助10
9秒前
Pikno123发布了新的文献求助10
10秒前
10秒前
正直的鸿发布了新的文献求助10
11秒前
研友_VZG7GZ应助活泼万言采纳,获得10
11秒前
lzm完成签到,获得积分10
15秒前
16秒前
深情安青应助霜之哀伤采纳,获得20
17秒前
perper发布了新的文献求助10
17秒前
大个应助南方姑娘采纳,获得10
18秒前
李爱国应助lzm采纳,获得10
18秒前
脑洞疼应助糊涂的黑米采纳,获得10
20秒前
23秒前
25秒前
26秒前
思源应助瓶盖采纳,获得10
28秒前
疑问发布了新的文献求助10
30秒前
31秒前
yx_cheng应助马旭辉采纳,获得10
33秒前
霜之哀伤发布了新的文献求助20
33秒前
无限的妙菡完成签到 ,获得积分10
35秒前
南方姑娘发布了新的文献求助10
36秒前
36秒前
美丽的依霜完成签到 ,获得积分10
37秒前
37秒前
科研通AI5应助唠叨的严青采纳,获得10
38秒前
威武皮带完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629