清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-view representation learning for tabular data integration using inter-feature relationships

计算机科学 数据挖掘 特征(语言学) 人工智能 特征学习 匹配(统计) 模式识别(心理学) 单变量 机器学习 多元统计 哲学 语言学 统计 数学
作者
Sandhya Tripathi,Bradley A. Fritz,Mohamed Abdelhack,Michael S. Avidan,Yixin Chen,Christopher R. King
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104602-104602 被引量:2
标识
DOI:10.1016/j.jbi.2024.104602
摘要

An applied problem facing all areas of data science is harmonizing data sources. Joining data from multiple origins with unmapped and only partially overlapping features is a prerequisite to developing and testing robust, generalizable algorithms, especially in healthcare. This integrating is usually resolved using meta-data such as feature names, which may be unavailable or ambiguous. Our goal is to design methods that create a mapping between structured tabular datasets derived from electronic health records independent of meta-data. We evaluate methods in the challenging case of numeric features without reliable and distinctive univariate summaries, such as nearly Gaussian and binary features. We assume that a small set of features are a priori mapped between two datasets, which share unknown identical features and possibly many unrelated features. Inter-feature relationships are the main source of identification which we expect. We compare the performance of contrastive learning methods for feature representations, novel partial auto-encoders, mutual-information graph optimizers, and simple statistical baselines on simulated data, public datasets, the MIMIC-III medical-record changeover, and perioperative records from before and after a medical-record system change. Performance was evaluated using both mapping of identical features and reconstruction accuracy of examples in the format of the other dataset. Contrastive learning-based methods overall performed the best, often substantially beating the literature baseline in matching and reconstruction, especially in the more challenging real data experiments. Partial auto-encoder methods showed on-par matching with contrastive methods in all synthetic and some real datasets, along with good reconstruction. However, the statistical method we created performed reasonably well in many cases, with much less dependence on hyperparameter tuning. When validating feature match output in the EHR dataset we found that some mistakes were actually a surrogate or related feature as reviewed by two subject matter experts. In simulation studies and real-world examples, we find that inter-feature relationships are effective at identifying matching or closely related features across tabular datasets when meta-data is not available. Decoder architectures are also reasonably effective at imputing features without an exact match.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
呼风唤雨发布了新的文献求助10
8秒前
繁馥然发布了新的文献求助20
24秒前
呼风唤雨完成签到,获得积分10
29秒前
marska完成签到,获得积分10
52秒前
繁馥然完成签到,获得积分10
53秒前
1分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
1分钟前
1分钟前
章铭-111发布了新的文献求助10
1分钟前
章铭-111完成签到,获得积分10
1分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
葛力发布了新的文献求助10
2分钟前
Eric800824完成签到 ,获得积分10
2分钟前
poegtam完成签到,获得积分10
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
严珍珍完成签到 ,获得积分10
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
4分钟前
苦逼的医学生陳完成签到 ,获得积分10
4分钟前
4分钟前
鳗鱼起眸发布了新的文献求助10
4分钟前
4分钟前
JamesPei应助鳗鱼起眸采纳,获得10
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
阎听筠完成签到 ,获得积分10
5分钟前
王磊完成签到 ,获得积分10
6分钟前
6分钟前
虚幻元风完成签到 ,获得积分10
7分钟前
7分钟前
zzuzll完成签到,获得积分10
7分钟前
英俊的铭应助帮帮我好吗采纳,获得10
8分钟前
慕青应助帮帮我好吗采纳,获得10
9分钟前
9分钟前
cc完成签到 ,获得积分10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997