强化学习
计算机科学
悬臂梁
控制器(灌溉)
振动
振动控制
传感器
梁(结构)
控制(管理)
控制理论(社会学)
压电
基础(线性代数)
人工神经网络
最优化问题
控制工程
人工智能
工程类
声学
算法
数学
结构工程
电气工程
物理
生物
农学
几何学
作者
M. Fèbvre,Jonathan Rodriguez,Simon Chesné,Manuel Collet
标识
DOI:10.1115/smasis2023-110216
摘要
Abstract New meta-materials are developed with the usage of piezoelectric transducers’ networks. Within the number of controlling strategies for vibration mitigation, this study uses the classical derivative control law as a basis. As a preliminary study in optimization with AI, an automatic algorithm using Reinforcement Learning (RL) approached with Trust Region Policy Optimization (TRPO) tunes a controller on an experimental cantilever beam. The control law is a simple derivative feedback between two collocated piezoelectric transducers close to the beam-clamped end. The RL algorithm runs offline on an estimated model of the experimental setup. The study compares control tuning methods between Reinforcement Learning results and a classical published approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI