亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Degradation of the ZT thermoelectric figure of merit in silicon when nanostructuring: From bulk to nanowires

材料科学 纳米线 功勋 热电效应 硅纳米线 降级(电信) 纳米技术 光电子学 工程物理 电气工程 热力学 物理 工程类
作者
Martí Raya-Moreno,Riccardo Rurali,Xavier Cartoixà
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:225: 125385-125385 被引量:4
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125385
摘要

Since the landmark paper by Hicks and Dresselhaus [Phys. Rev. B 47, 16631(R) (1993)], there has been a general consensus that one-dimensional nanoscale conductors, i.e. nanowires, provide the long sought paradigm to implement the so-called phonon-glass electron-crystal material, which results in large improvements in the thermoelectric figure of merit ZT. Despite some encouraging—though isolated—experimental results, this idea has never been subjected to a rigorous scrutiny and the effect of the coupled dynamics of electrons and phonons has usually been oversimplified. To bypass these limitations, we have calculated the effective thermoelectric parameters for silicon nanowires (SiNWs) by iteratively solving the coupled electron-phonon Boltzmann transport equation (EPBTE) supplied with first-principles data. This allows for an unprecedented precision in determining the correct dependence of the thermoelectric parameters with system size; including, but not limited to, the figure of merit and its enhancement or degradation due to nanostructuring. Indeed, we demonstrate that the commonly used relaxation time approximation (RTA), or the uncoupled beyond the RTA (iterative) solution fail to describe the correct effect of nanostructuring on the thermoelectric properties and efficiency in SiNWs due to the strong contribution of phonon drag to the Seebeck coefficient, so that the use of fully coupled solution of the EPBTE is essential to obtain the correct effect of nanostructuring. Most importantly, we show that, contrarily to what commonly argued, resorting to NWs is not necessarily beneficial for ZT. Indeed, in a wide range of diameters nanostructuring diminishes the Seebeck coefficient faster than the decrease in thermal conductivity, due to the suppression of very long wavelength phonons responsible for the largest contribution to the phonon drag component of the Seebeck coefficient. This penalty to ZT can be mitigated if the NWs have a very rough surface, providing additional reduction to the thermal conductivity. Additionally, we demonstrate that our methodology provides improved data sets for an accurate determination of doping concentration in NWs through electrical-based inference and excellent agreement with the available experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森距离完成签到,获得积分10
刚刚
可靠的怜珊应助qiqi1111采纳,获得10
刚刚
absb发布了新的文献求助10
刚刚
absb发布了新的文献求助10
1秒前
absb发布了新的文献求助10
1秒前
于元元快学习完成签到,获得积分10
1秒前
thenafly发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助50
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
absb发布了新的文献求助10
2秒前
jml完成签到,获得积分10
3秒前
讨厌桃子完成签到 ,获得积分10
5秒前
呼啦呼啦完成签到 ,获得积分10
6秒前
丘比特应助Luffy采纳,获得10
8秒前
友好的小翠完成签到,获得积分10
8秒前
隐形曼青应助十是十采纳,获得10
9秒前
17秒前
28秒前
29秒前
33秒前
35秒前
许晴完成签到 ,获得积分10
35秒前
七少爷发布了新的文献求助10
35秒前
36秒前
Moo5_zzZ发布了新的文献求助30
41秒前
Yz完成签到 ,获得积分10
50秒前
袁青寒完成签到,获得积分10
51秒前
太阳完成签到,获得积分20
57秒前
OK完成签到 ,获得积分10
1分钟前
李健应助默默板凳采纳,获得10
1分钟前
1分钟前
赘婿应助箴言Julius采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356495
求助须知:如何正确求助?哪些是违规求助? 4488283
关于积分的说明 13971930
捐赠科研通 4389157
什么是DOI,文献DOI怎么找? 2411416
邀请新用户注册赠送积分活动 1403956
关于科研通互助平台的介绍 1377862