Conditional and Unconditional Treatment Effects in Randomized Clinical Trials: Estimands, Estimation, and Interpretation

计量经济学 口译(哲学) 统计 治疗效果 随机对照试验 估计 计算机科学 医学 数学 内科学 经济 程序设计语言 管理 传统医学
作者
Jiawei Wei,Jiajun Xu,Björn Bornkamp,Ray Lin,Huiling Tian,Dong Xi,Xin Zhang,Zhenlu Zhao,Satrajit Roychoudhury
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:: 1-11
标识
DOI:10.1080/19466315.2023.2292774
摘要

ICH E9(R1) specifies the importance of precisely defining the treatment effect for clinical trials—to inform patient choices and facilitate evidence-based decision-making. FDA’s guidance on covariate adjustment encourages the judicious use of baseline covariates to enhance efficiency. Careful consideration is required when adjusting for covariates in nonlinear models such as logistic regression and Cox regression. For these nonlinear models, including baseline covariates can change the targeted treatment effect (estimand). It is also crucial that the proposed statistical analyses align with the estimand of interest. Covariate-adjusted estimators used for unconditional treatment effect are typically robust to misspecification of the used regression models. Despite extensive literature and recommendations by the FDA on the statistical theory and properties of these methods, the real-life application of such methodologies is still limited. Moreover, a few open questions require further discussion, especially for time-to-event outcomes. In this article, we present causal estimands definition of conditional and unconditional treatment effects in randomized clinical trials. We also evaluate different estimation methods for estimating conditional and unconditional treatment effects for the binary and time-to-event endpoints. We also discuss practical considerations in choosing the conditional versus unconditional effect, implementing the estimation methods, and interpreting results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景平完成签到,获得积分10
刚刚
2秒前
乱七八糟发布了新的文献求助30
2秒前
2秒前
tiger一tiaotiao完成签到,获得积分10
2秒前
serein完成签到,获得积分10
2秒前
yaaabo完成签到,获得积分10
3秒前
科研yu完成签到,获得积分10
3秒前
dyd发布了新的文献求助30
4秒前
隐形曼青应助喵喵采纳,获得10
4秒前
5秒前
6秒前
白菜帮子完成签到,获得积分10
6秒前
科研通AI2S应助xcc采纳,获得10
6秒前
nibaba完成签到,获得积分10
7秒前
善学以致用应助123采纳,获得10
7秒前
脑洞疼应助hahahayi采纳,获得10
7秒前
梁三柏应助huahua采纳,获得10
8秒前
冷静青文发布了新的文献求助10
8秒前
sunianjinshi完成签到,获得积分10
10秒前
吴大振应助晚晚采纳,获得10
10秒前
xdh发布了新的文献求助10
11秒前
打打应助ccc采纳,获得10
12秒前
12秒前
朴素的紫安完成签到 ,获得积分10
12秒前
不停完成签到,获得积分20
13秒前
dingxy1009完成签到,获得积分10
13秒前
科研通AI2S应助FancyShi采纳,获得10
13秒前
pluto应助禹丹烟采纳,获得10
17秒前
FancyShi完成签到,获得积分10
19秒前
安德鲁森完成签到 ,获得积分10
19秒前
甜甜的曼荷完成签到,获得积分10
20秒前
21秒前
hou完成签到 ,获得积分10
22秒前
22秒前
邓佳鑫Alan发布了新的文献求助10
23秒前
23秒前
打打应助吴彦祖采纳,获得10
25秒前
科研通AI2S应助小绵羊采纳,获得10
25秒前
xdh完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023