亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Studying the effects of feature selection approaches on machine learning techniques for Mushroom classification problem

特征选择 过度拟合 计算机科学 人工智能 机器学习 特征(语言学) 分类器(UML) 遗传算法 选择(遗传算法) 随机森林 最小冗余特征选择 离群值 模式识别(心理学) 人工神经网络 哲学 语言学
作者
Abu Bakar Siddique,Muhammad Abu Bakar,Raja Hashim Ali,Usama Arshad,Nisar Ali,Zain ul Abideen,Talha Ali Khan,Ali Zeeshan Ijaz,Muhammad Imad
标识
DOI:10.1109/icit59216.2023.10335842
摘要

Feature selection is a critical factor affecting the performance of optimization algorithms. Without proper feature selection, optimization algorithms may suffer from slow convergence, overfitting, increased computational requirements, and longer execution times. On the other hand, omitting important features can lead to loss of relevant information, decreased accuracy, bias, and increased vulnerability to noise and outliers. This study investigates the use of genetic algorithms as a feature selection technique for a classification problem, specifically the mushrooms classification problem. Random forest is employed as the machine learning classifier, and genetic algorithms are compared with correlation as the feature selection method. The results show that genetic algorithms achieve higher accuracy, precision, recall, and F1-score compared to correlation-based feature selection. However, genetic algorithms have limitations in their applicability to specific optimization problems, the need for proper parameter setup, and longer convergence times. Despite these drawbacks, genetic algorithms prove to be superior to other feature selection techniques, particularly correlation-based approaches. This study highlights the importance of selecting appropriate feature selection techniques for optimization algorithms to improve their performance and achieve better results. In addition, this study explored the performance of various machine learning approaches on the complete mushroom dataset with 22 features and shows that genetic algorithms with feature selection as the most accurate method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的安萱完成签到 ,获得积分10
7秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
听风完成签到 ,获得积分10
10秒前
wanci应助简单的银耳汤采纳,获得10
18秒前
23秒前
Xixicccccccc发布了新的文献求助10
29秒前
32秒前
32秒前
37秒前
38秒前
今后应助Fiy采纳,获得10
43秒前
48秒前
53秒前
violet发布了新的文献求助10
54秒前
Fiy发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6.1应助风听你讲采纳,获得10
1分钟前
yxw发布了新的文献求助10
1分钟前
研友_VZG7GZ应助Jin采纳,获得10
1分钟前
1分钟前
简单的银耳汤完成签到,获得积分10
1分钟前
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
2分钟前
bkagyin应助violet采纳,获得10
2分钟前
2分钟前
大白完成签到 ,获得积分10
2分钟前
2分钟前
Qqiao完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491