Studying the effects of feature selection approaches on machine learning techniques for Mushroom classification problem

特征选择 过度拟合 计算机科学 人工智能 机器学习 特征(语言学) 分类器(UML) 遗传算法 选择(遗传算法) 随机森林 最小冗余特征选择 离群值 模式识别(心理学) 人工神经网络 语言学 哲学
作者
Abu Bakar Siddique,Muhammad Abu Bakar,Raja Hashim Ali,Usama Arshad,Nisar Ali,Zain ul Abideen,Talha Ali Khan,Ali Zeeshan Ijaz,Muhammad Imad
标识
DOI:10.1109/icit59216.2023.10335842
摘要

Feature selection is a critical factor affecting the performance of optimization algorithms. Without proper feature selection, optimization algorithms may suffer from slow convergence, overfitting, increased computational requirements, and longer execution times. On the other hand, omitting important features can lead to loss of relevant information, decreased accuracy, bias, and increased vulnerability to noise and outliers. This study investigates the use of genetic algorithms as a feature selection technique for a classification problem, specifically the mushrooms classification problem. Random forest is employed as the machine learning classifier, and genetic algorithms are compared with correlation as the feature selection method. The results show that genetic algorithms achieve higher accuracy, precision, recall, and F1-score compared to correlation-based feature selection. However, genetic algorithms have limitations in their applicability to specific optimization problems, the need for proper parameter setup, and longer convergence times. Despite these drawbacks, genetic algorithms prove to be superior to other feature selection techniques, particularly correlation-based approaches. This study highlights the importance of selecting appropriate feature selection techniques for optimization algorithms to improve their performance and achieve better results. In addition, this study explored the performance of various machine learning approaches on the complete mushroom dataset with 22 features and shows that genetic algorithms with feature selection as the most accurate method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KristenStewart完成签到,获得积分10
1秒前
过时的热狗完成签到,获得积分10
1秒前
点点完成签到,获得积分10
1秒前
Zxc发布了新的文献求助10
2秒前
涨芝士完成签到 ,获得积分10
3秒前
4秒前
无名欧文关注了科研通微信公众号
4秒前
科研123完成签到,获得积分10
6秒前
crescent完成签到 ,获得积分10
8秒前
无奈傲菡发布了新的文献求助10
8秒前
烟花应助123号采纳,获得10
11秒前
超帅的遥完成签到,获得积分10
11秒前
Zxc完成签到,获得积分10
12秒前
lbt完成签到 ,获得积分10
13秒前
yao完成签到 ,获得积分10
14秒前
14秒前
16秒前
17秒前
17秒前
doudou完成签到 ,获得积分10
17秒前
BCS完成签到,获得积分10
17秒前
领导范儿应助KYN采纳,获得10
17秒前
18秒前
独特的莫言完成签到,获得积分10
20秒前
lin发布了新的文献求助10
21秒前
aero完成签到 ,获得积分10
23秒前
123号完成签到,获得积分10
25秒前
充电宝应助TT采纳,获得10
27秒前
28秒前
28秒前
英姑应助荒野星辰采纳,获得10
30秒前
30秒前
YHY完成签到,获得积分10
32秒前
科研通AI5应助魏伯安采纳,获得10
32秒前
caoyy发布了新的文献求助10
32秒前
33秒前
34秒前
张喻235532完成签到,获得积分10
35秒前
失眠虔纹发布了新的文献求助10
36秒前
香蕉觅云应助糊涂的小伙采纳,获得10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849