BisDeNet: A New Lightweight Deep Learning-Based Framework for Efficient Landslide Detection

山崩 计算机科学 深度学习 人工智能 渲染(计算机图形) 机器学习 特征提取 图像拼接 数据挖掘 地质学 岩土工程
作者
Tao Chen,Xiao Gao,Gang Liu,Chen Wang,Zeyang Zhao,Jie Dou,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3648-3663 被引量:15
标识
DOI:10.1109/jstars.2024.3351873
摘要

Landslides are catastrophic geological events that can cause significant damage to properties and result in the loss of human lives. Deep learning technology applied to optical remote sensing images can enable effective landslide-prone area detection. However, conventional landslide detection (LD) models often employ complex structural designs to ensure detection accuracy. The complexity often hampers the detection speed, rendering these models inadequate for the swift emergency monitoring of landslides. To address these problems, we propose a new lightweight deep learning-based framework, BisDeNet, for efficient LD. To improve the efficiency of the proposed BisDeNet, we replaced the context path in the original BiSeNet with DenseNet due to its strong feature extraction ability, few required parameters, and low model complexity. Two sites with different and representative landslide developments were selected as the study areas to verify the performance of our proposed BisDeNet. Additionally, we introduced landslide causative factors to enhance the sampling dataset. To evaluate the effectiveness of our approach, we compared the performance of our BisDeNet with the performances of three other BiSeNet-based methods and an advanced Transformer-based model DeiT (Data-efficient Image Transformer). Our experimental results indicate that the F1 scores of BisDeNet in the two study areas are 0.9006 and 0.8850, which are 26.22% and 1.86% higher than the scores of BiSeNet, respectively, but slightly lower than that of the DeiT model. Furthermore, our proposed BisDeNet requires the fewest number of parameters and the least memory out of the five models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yooloo发布了新的文献求助10
2秒前
2秒前
石石完成签到,获得积分10
2秒前
汉堡包应助王五采纳,获得10
3秒前
khjia完成签到,获得积分10
3秒前
Jin发布了新的文献求助10
3秒前
4秒前
koukeika完成签到,获得积分10
4秒前
holmes完成签到 ,获得积分10
5秒前
6秒前
lin完成签到,获得积分10
8秒前
8秒前
SciGPT应助THEEVE采纳,获得10
9秒前
seemefly201374完成签到,获得积分10
9秒前
上官若男应助小远采纳,获得10
10秒前
nicewink完成签到,获得积分10
11秒前
11秒前
11秒前
迷路的清涟完成签到,获得积分10
11秒前
居亦活简完成签到 ,获得积分10
12秒前
Jin完成签到,获得积分10
13秒前
Owen应助xiax03采纳,获得30
13秒前
左左发布了新的文献求助30
13秒前
13秒前
15秒前
NexusExplorer应助六点一横采纳,获得10
15秒前
稳重无招发布了新的文献求助10
16秒前
18秒前
19秒前
科研民工李完成签到,获得积分10
19秒前
19秒前
xsb发布了新的文献求助30
20秒前
fs完成签到,获得积分10
21秒前
21秒前
欣慰的白羊完成签到,获得积分10
22秒前
23秒前
阿里院士完成签到,获得积分10
24秒前
小远发布了新的文献求助10
24秒前
nemo711完成签到,获得积分10
25秒前
fs发布了新的文献求助10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186