亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BisDeNet: A New Lightweight Deep Learning-Based Framework for Efficient Landslide Detection

山崩 计算机科学 深度学习 人工智能 渲染(计算机图形) 机器学习 特征提取 图像拼接 数据挖掘 地质学 岩土工程
作者
Tao Chen,Xiao Gao,Gang Liu,Chen Wang,Zeyang Zhao,Jie Dou,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3648-3663 被引量:40
标识
DOI:10.1109/jstars.2024.3351873
摘要

Landslides are catastrophic geological events that can cause significant damage to properties and result in the loss of human lives. Deep-learning technology applied to optical remote sensing images can enable effective landslide-prone area detection. However, conventional landslide detection (LD) models often employ complex structural designs to ensure detection accuracy. The complexity often hampers the detection speed, rendering these models inadequate for the swift emergency monitoring of landslides. To address these problems, we propose a new lightweight deep-learning-based framework, BisDeNet, for efficient LD. To improve the efficiency of the proposed BisDeNet, we replaced the context path in the original BiSeNet with DenseNet due to its strong feature extraction ability, few required parameters, and low model complexity. Two sites with different and representative landslide developments were selected as the study areas to verify the performance of our proposed BisDeNet. Additionally, we introduced landslide causative factors to enhance the sampling dataset. To evaluate the effectiveness of our approach, we compared the performance of our BisDeNet with the performances of three other BiSeNet-based methods and an advanced transformer-based model data-efficient image transformer (DeiT). Our experimental results indicate that the F1-scores of BisDeNet in the two study areas are 0.9006 and 0.8850, which are 26.22% and 1.86% higher than the scores of BiSeNet, respectively, but slightly lower than that of the DeiT model. Furthermore, our proposed BisDeNet requires the fewest number of parameters and the least memory out of the five models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Fluoxtine发布了新的文献求助10
3秒前
5秒前
7秒前
23秒前
jyy发布了新的文献求助10
29秒前
31秒前
yunshui发布了新的文献求助10
36秒前
云溪完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
研友_8WbP4Z完成签到,获得积分20
57秒前
58秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
Mufreh应助科研通管家采纳,获得30
1分钟前
Timelapse应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
湫栗发布了新的文献求助10
1分钟前
薛枏发布了新的文献求助10
1分钟前
sunryaes完成签到 ,获得积分10
1分钟前
薛枏完成签到,获得积分10
1分钟前
科研通AI6.1应助jyy采纳,获得10
1分钟前
1分钟前
Reed发布了新的文献求助10
1分钟前
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研小黑发布了新的文献求助10
1分钟前
1分钟前
隐形曼青应助Reed采纳,获得10
1分钟前
科研小黑完成签到,获得积分10
1分钟前
neao完成签到 ,获得积分10
2分钟前
科研通AI6.1应助jyy采纳,获得10
2分钟前
xiaolei001应助Fluoxtine采纳,获得10
2分钟前
2分钟前
MchemG举报自由访烟求助涉嫌违规
2分钟前
jyy发布了新的文献求助10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491