BisDeNet: A New Lightweight Deep Learning-Based Framework for Efficient Landslide Detection

山崩 计算机科学 深度学习 人工智能 渲染(计算机图形) 机器学习 特征提取 图像拼接 数据挖掘 地质学 岩土工程
作者
Tao Chen,Xiao Gao,Gang Liu,Chen Wang,Zeyang Zhao,Jie Dou,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3648-3663 被引量:40
标识
DOI:10.1109/jstars.2024.3351873
摘要

Landslides are catastrophic geological events that can cause significant damage to properties and result in the loss of human lives. Deep-learning technology applied to optical remote sensing images can enable effective landslide-prone area detection. However, conventional landslide detection (LD) models often employ complex structural designs to ensure detection accuracy. The complexity often hampers the detection speed, rendering these models inadequate for the swift emergency monitoring of landslides. To address these problems, we propose a new lightweight deep-learning-based framework, BisDeNet, for efficient LD. To improve the efficiency of the proposed BisDeNet, we replaced the context path in the original BiSeNet with DenseNet due to its strong feature extraction ability, few required parameters, and low model complexity. Two sites with different and representative landslide developments were selected as the study areas to verify the performance of our proposed BisDeNet. Additionally, we introduced landslide causative factors to enhance the sampling dataset. To evaluate the effectiveness of our approach, we compared the performance of our BisDeNet with the performances of three other BiSeNet-based methods and an advanced transformer-based model data-efficient image transformer (DeiT). Our experimental results indicate that the F1-scores of BisDeNet in the two study areas are 0.9006 and 0.8850, which are 26.22% and 1.86% higher than the scores of BiSeNet, respectively, but slightly lower than that of the DeiT model. Furthermore, our proposed BisDeNet requires the fewest number of parameters and the least memory out of the five models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱吃雪糕应助小兵采纳,获得10
1秒前
JamesPei应助九湖夷上采纳,获得10
1秒前
战战兢兢的失眠完成签到 ,获得积分10
2秒前
caicai完成签到,获得积分10
2秒前
Adam_Lan发布了新的文献求助10
3秒前
3秒前
迷路雨寒应助卤猪蹄采纳,获得10
4秒前
暴躁的芷巧完成签到,获得积分10
4秒前
4秒前
Young完成签到,获得积分10
4秒前
5秒前
星辰大海应助简单的乐驹采纳,获得10
5秒前
6秒前
嘿嘿啊哈给嘿嘿啊哈的求助进行了留言
6秒前
酷炫的不二完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
xh93完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
专注的棉花糖完成签到,获得积分10
9秒前
蓝天应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Return应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
纯情的浩然完成签到,获得积分10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
机智发布了新的文献求助10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167