BisDeNet: A New Lightweight Deep Learning-Based Framework for Efficient Landslide Detection

山崩 计算机科学 深度学习 人工智能 渲染(计算机图形) 机器学习 特征提取 图像拼接 数据挖掘 地质学 岩土工程
作者
Tao Chen,Xiao Gao,Gang Liu,Chen Wang,Zeyang Zhao,Jie Dou,Ruiqing Niu,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3648-3663 被引量:40
标识
DOI:10.1109/jstars.2024.3351873
摘要

Landslides are catastrophic geological events that can cause significant damage to properties and result in the loss of human lives. Deep-learning technology applied to optical remote sensing images can enable effective landslide-prone area detection. However, conventional landslide detection (LD) models often employ complex structural designs to ensure detection accuracy. The complexity often hampers the detection speed, rendering these models inadequate for the swift emergency monitoring of landslides. To address these problems, we propose a new lightweight deep-learning-based framework, BisDeNet, for efficient LD. To improve the efficiency of the proposed BisDeNet, we replaced the context path in the original BiSeNet with DenseNet due to its strong feature extraction ability, few required parameters, and low model complexity. Two sites with different and representative landslide developments were selected as the study areas to verify the performance of our proposed BisDeNet. Additionally, we introduced landslide causative factors to enhance the sampling dataset. To evaluate the effectiveness of our approach, we compared the performance of our BisDeNet with the performances of three other BiSeNet-based methods and an advanced transformer-based model data-efficient image transformer (DeiT). Our experimental results indicate that the F1-scores of BisDeNet in the two study areas are 0.9006 and 0.8850, which are 26.22% and 1.86% higher than the scores of BiSeNet, respectively, but slightly lower than that of the DeiT model. Furthermore, our proposed BisDeNet requires the fewest number of parameters and the least memory out of the five models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
rinki完成签到,获得积分10
刚刚
1秒前
1秒前
冷茗完成签到,获得积分10
1秒前
2秒前
张垚发布了新的文献求助10
2秒前
梅耀寰发布了新的文献求助10
2秒前
靓丽幻梅完成签到,获得积分10
2秒前
研友_VZG7GZ应助nn采纳,获得10
2秒前
沉默南露发布了新的文献求助10
2秒前
郭露露完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
孟祥飞完成签到,获得积分10
4秒前
LLL完成签到,获得积分10
4秒前
4秒前
4秒前
活泼山雁发布了新的文献求助10
5秒前
mp5完成签到,获得积分10
5秒前
月中天梧桐栖完成签到,获得积分10
5秒前
zsj完成签到 ,获得积分10
5秒前
yqsf789发布了新的文献求助10
6秒前
温暖的白猫完成签到,获得积分10
6秒前
咕咕完成签到 ,获得积分10
6秒前
NexusExplorer应助专注钢笔采纳,获得10
6秒前
YuZhang完成签到 ,获得积分10
6秒前
舒心妙旋发布了新的文献求助10
6秒前
kk完成签到 ,获得积分10
7秒前
7秒前
7秒前
传奇3应助沉默南露采纳,获得10
7秒前
四季安完成签到 ,获得积分10
8秒前
震动的听安完成签到,获得积分10
8秒前
8秒前
顾勇完成签到,获得积分0
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017