A Priori Knowledge-Based Physics-Informed Neural Networks for Electromagnetic Inverse Scattering

先验与后验 人工神经网络 散射 逆散射问题 计算机科学 反问题 物理 电磁学 电磁理论 计算电磁学 电磁场 人工智能 光学 数学 工程物理 量子力学 数学分析 认识论 哲学
作者
Yi‐Di Hu,Xiao‐Hua Wang,Hui Zhou,Lei Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-9 被引量:1
标识
DOI:10.1109/tgrs.2024.3371528
摘要

Based on the physics-informed neural network (PINN) method, a two-step inverse scattering method is proposed to improve the efficiency and accuracy of the inversion in this work. The first step is to calculate the total fields and the initial solution of permittivity distribution in the domain of interest by a traditional inversion algorithm, the distorted finite-difference frequency-domain-based iterative method, as a priori information for the cascaded PINNs. The second step is to use the calculated a prior information as additional parts of the data loss term in the proposed PINN framework for network training. Several typical numerical examples and one experimental example are considered to validate the proposed method. Inversion results show that the proposed method has good accuracy, efficiency, and robustness to noise. Compared with the data-driven deep learning methods in electromagnetic inversion, the proposed method belongs to an unsupervised learning framework and can handle more general problems. Compared with the traditional inverse algorithms, it is more efficient and accurate. In general, the proposed two-step method inherits the advantages of both traditional deep learning methods and inverse scattering methods. Importantly, it also establishes the bridge between traditional inverse scattering algorithms and deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
苹果大娘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
李健应助qwepirt采纳,获得10
3秒前
猪猪hero发布了新的文献求助30
3秒前
123456hhh关注了科研通微信公众号
3秒前
Jasper应助木又权采纳,获得10
3秒前
4秒前
5秒前
wjsAljl完成签到,获得积分10
5秒前
swj完成签到,获得积分10
5秒前
善学以致用应助cimy采纳,获得10
6秒前
爰采唐矣发布了新的文献求助10
6秒前
6秒前
7秒前
薛十七完成签到,获得积分10
7秒前
8秒前
9秒前
藜誌发布了新的文献求助10
9秒前
wanci应助阳光的青槐采纳,获得10
9秒前
风中小刺猬完成签到,获得积分10
9秒前
明亮的诗兰完成签到,获得积分20
9秒前
liumou完成签到,获得积分10
10秒前
chenqiumu应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
chenqiumu应助科研通管家采纳,获得20
10秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
通行证应助科研通管家采纳,获得10
11秒前
chenqiumu应助科研通管家采纳,获得20
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
玄风应助科研通管家采纳,获得10
11秒前
玄风应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
sunny完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675