A Priori Knowledge-Based Physics-Informed Neural Networks for Electromagnetic Inverse Scattering

先验与后验 人工神经网络 散射 逆散射问题 计算机科学 反问题 物理 电磁学 电磁理论 计算电磁学 电磁场 人工智能 光学 数学 工程物理 量子力学 数学分析 认识论 哲学
作者
Yi‐Di Hu,Xiao‐Hua Wang,Hui Zhou,Lei Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-9 被引量:1
标识
DOI:10.1109/tgrs.2024.3371528
摘要

Based on the physics-informed neural network (PINN) method, a two-step inverse scattering method is proposed to improve the efficiency and accuracy of the inversion in this work. The first step is to calculate the total fields and the initial solution of permittivity distribution in the domain of interest by a traditional inversion algorithm, the distorted finite-difference frequency-domain-based iterative method, as a priori information for the cascaded PINNs. The second step is to use the calculated a prior information as additional parts of the data loss term in the proposed PINN framework for network training. Several typical numerical examples and one experimental example are considered to validate the proposed method. Inversion results show that the proposed method has good accuracy, efficiency, and robustness to noise. Compared with the data-driven deep learning methods in electromagnetic inversion, the proposed method belongs to an unsupervised learning framework and can handle more general problems. Compared with the traditional inverse algorithms, it is more efficient and accurate. In general, the proposed two-step method inherits the advantages of both traditional deep learning methods and inverse scattering methods. Importantly, it also establishes the bridge between traditional inverse scattering algorithms and deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
周小鱼发布了新的文献求助10
1秒前
善学以致用应助整齐的刚采纳,获得10
1秒前
Susco发布了新的文献求助10
1秒前
冷酷愚志完成签到,获得积分10
2秒前
lulu666发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
李y梅子发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
祝你开心发布了新的文献求助10
4秒前
4秒前
ym完成签到,获得积分20
5秒前
hcxhch完成签到,获得积分10
5秒前
丢星发布了新的文献求助10
5秒前
大模型应助无限绮南采纳,获得10
5秒前
丘比特应助犹豫酸奶采纳,获得10
5秒前
NJU_Chanwell完成签到,获得积分10
5秒前
5秒前
Leonard发布了新的文献求助10
5秒前
6秒前
wahaha发布了新的文献求助20
6秒前
Duffy_Z发布了新的文献求助10
7秒前
zhuyutian完成签到,获得积分10
7秒前
7秒前
8秒前
jjjjchou发布了新的文献求助10
9秒前
健忘雁风完成签到,获得积分10
9秒前
9秒前
1111发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
HH完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482