A Priori Knowledge-Based Physics-Informed Neural Networks for Electromagnetic Inverse Scattering

先验与后验 人工神经网络 散射 逆散射问题 计算机科学 反问题 物理 电磁学 电磁理论 计算电磁学 电磁场 人工智能 光学 数学 工程物理 量子力学 数学分析 认识论 哲学
作者
Yi‐Di Hu,Xiao‐Hua Wang,Hui Zhou,Lei Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-9 被引量:1
标识
DOI:10.1109/tgrs.2024.3371528
摘要

Based on the physics-informed neural network (PINN) method, a two-step inverse scattering method is proposed to improve the efficiency and accuracy of the inversion in this work. The first step is to calculate the total fields and the initial solution of permittivity distribution in the domain of interest by a traditional inversion algorithm, the distorted finite-difference frequency-domain-based iterative method, as a priori information for the cascaded PINNs. The second step is to use the calculated a prior information as additional parts of the data loss term in the proposed PINN framework for network training. Several typical numerical examples and one experimental example are considered to validate the proposed method. Inversion results show that the proposed method has good accuracy, efficiency, and robustness to noise. Compared with the data-driven deep learning methods in electromagnetic inversion, the proposed method belongs to an unsupervised learning framework and can handle more general problems. Compared with the traditional inverse algorithms, it is more efficient and accurate. In general, the proposed two-step method inherits the advantages of both traditional deep learning methods and inverse scattering methods. Importantly, it also establishes the bridge between traditional inverse scattering algorithms and deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yenom完成签到 ,获得积分10
刚刚
1秒前
1秒前
SciGPT应助浩浩大人采纳,获得10
1秒前
迅速冰岚发布了新的文献求助10
1秒前
1秒前
WTT完成签到,获得积分20
2秒前
2秒前
苹果煎饼发布了新的文献求助10
2秒前
yan发布了新的文献求助10
2秒前
云肜发布了新的文献求助30
2秒前
Hello应助FatDanny采纳,获得10
3秒前
斯文败类应助娜行采纳,获得10
3秒前
庄小因完成签到,获得积分10
3秒前
热心市民小刘给热心市民小刘的求助进行了留言
3秒前
小钟完成签到,获得积分10
3秒前
徐慕源发布了新的文献求助10
3秒前
4秒前
深情安青应助任医生采纳,获得10
4秒前
4秒前
sherrinford完成签到,获得积分10
4秒前
科研通AI2S应助VDC采纳,获得10
5秒前
YAOYAO发布了新的文献求助10
5秒前
舒适豌豆完成签到,获得积分10
5秒前
Amber应助reck采纳,获得10
5秒前
Renhong完成签到,获得积分10
6秒前
7秒前
桐桐应助咕噜仔采纳,获得10
7秒前
季宇完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助大脸妹采纳,获得10
8秒前
AA发布了新的文献求助10
9秒前
9秒前
9秒前
小二郎应助小喵采纳,获得10
10秒前
10秒前
stt发布了新的文献求助10
10秒前
11秒前
Oak完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678