A Multipolicy Deep Reinforcement Learning Approach for Multiobjective Joint Routing and Scheduling in Deterministic Networks

计算机科学 强化学习 调度(生产过程) 接头(建筑物) 布线(电子设计自动化) 分布式计算 人工智能 数学优化 计算机网络 工程类 建筑工程 数学
作者
S. Y. Yang,Lei Zhuang,Jianhui Zhang,Julong Lan,Bingkui Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17402-17418 被引量:2
标识
DOI:10.1109/jiot.2024.3358403
摘要

Deterministic Networking (DetNet) is a highly predictable and controllable network technology. It provides low packet loss rate and bounded latency data transmission for applications through resource reservation and scheduling mechanisms. However, DetNet is a hybrid traffic system, and the resource reservation mechanism cannot guarantee the deterministic requirements as the number of diverse deterministic applications increases. As a result, there is an urgent need for an efficient and fine-grained scheduling mechanism to meet the deterministic and bounded latency requirements. In this paper, we propose a novel end-to-end multi-policy deep reinforcement learning framework for automatically learning multiple policies and addressing the problem of multi-objective joint routing and scheduling. Specifically, we formulate the multi-action problem in joint routing and scheduling as a Multi-Markov Decision Process (MMDP) and design a new reward function to optimize multiple objectives. When optimizing the learning agent, we introduce an A3C-based multi-strategy optimization algorithm (A3C-MSO) to train two sub-policies, including the queue operation policy and the node operation policy for assigning queue operations to nodes. Furthermore, we integrate a graph convolutional network (GCN) into the learning framework to capture the spatial characteristics of irregular network topologies and enhance the algorithm's generalization ability. Extensive experimental results in different scenarios indicate that compared to the existing state-of-the-art mechanisms, the proposed mechanism has shown a 13% improvement in schedulability and an 18% enhancement in resource utilization. Particularly in high-load scenarios, the time cost of the proposed mechanism can be reduced by up to 40.5%. Furthermore, results obtained on real industrial network topology instances indicate that the proposed learning strategies exhibit good generalization and effectiveness in large-scale scheduling instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YanZhe完成签到,获得积分10
刚刚
老实易蓉应助Hhh采纳,获得10
1秒前
过时的热狗完成签到,获得积分10
1秒前
Darker发布了新的文献求助10
2秒前
2秒前
2秒前
dj完成签到,获得积分20
2秒前
3秒前
豆豆发布了新的文献求助10
3秒前
3秒前
梦旋完成签到 ,获得积分10
3秒前
吴世宇发布了新的文献求助30
3秒前
3秒前
3秒前
ice完成签到,获得积分20
4秒前
illusion完成签到,获得积分10
4秒前
fin完成签到 ,获得积分10
4秒前
5秒前
5秒前
瑞_完成签到,获得积分10
5秒前
调皮时光完成签到,获得积分10
6秒前
舒庆春发布了新的文献求助10
6秒前
7秒前
ShyerC发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
7秒前
8秒前
hihi发布了新的文献求助10
8秒前
ice发布了新的文献求助10
9秒前
9秒前
哈基米完成签到 ,获得积分20
9秒前
9秒前
机智的三国菌完成签到,获得积分10
10秒前
Lee发布了新的文献求助10
10秒前
芫芫完成签到 ,获得积分10
10秒前
11秒前
12秒前
科目三应助TangQQ采纳,获得10
13秒前
小李吃梨完成签到,获得积分10
13秒前
英俊的念寒完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300