亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-throughput phenotyping using VIS/NIR spectroscopy in the classification of soybean genotypes for grain yield and industrial traits

C4.5算法 产量(工程) 随机区组设计 随机森林 高光谱成像 支持向量机 农学 数学 生物 统计 人工智能 遥感 计算机科学 材料科学 地理 朴素贝叶斯分类器 冶金
作者
Dthenifer Cordeiro Santana,Izabela Cristina de Oliveira,João Lucas Gouveia de Oliveira,Fábio Henrique Rojo Baio,Larissa Pereira Ribeiro Teodoro,Carlos Antônio da Silva,Ana Carina Candido Seron,Luís Carlos Vinhas Ítavo,Paulo Carteri Coradi,Paulo Eduardo Teodoro
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:310: 123963-123963 被引量:7
标识
DOI:10.1016/j.saa.2024.123963
摘要

Employing visible and near infrared sensors in high-throughput phenotyping provides insight into the relationship between the spectral characteristics of the leaf and the content of grain properties, helping soybean breeders to direct their program towards improving grain traits according to researchers' interests. Our research hypothesis is that the leaf reflectance of soybean genotypes can be directly related to industrial grain traits such as protein and fiber contents. Thus, the objectives of the study were: (i) to classify soybean genotypes according to the grain yield and industrial traits; (ii) to identify the algorithm(s) with the highest accuracy for classifying genotypes using leaf reflectance as model input; (iii) to identify the best input data for the algorithms to improve their performance. A field experiment was carried out in randomized block design with three replications and 32 soybean genotypes. At 60 days after emergence, spectral analysis was carried out on three leaf samples from each plot. A hyperspectral sensor was used to capture reflectance between the wavelengths from 450 to 824 nm. Representative spectral bands were selected and grouped into means. After harvest, grain yield was assessed and laboratory analyses of industrial traits were carried out. Spectral, industrial traits and yield data were subjected to statistical analysis. Data were analyzed by the following machine learning algorithms: J48 (J48) and REPTree (DT) decision trees, Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and conventional Logistic Regression (LR) analysis. The clusters formed were used as the output of the models, while two groups of input data were used for the input of the models: the spectral variables (WL) noise-free obtained by the sensor (450–828 nm) and the spectral means of the selected bands (SB) (450.0–720.6 nm). Soybean genotypes were grouped according to their grain yield and industrial traits, in which the SVM and J48 algorithms performed better at classifying them. Using the spectral bands selected in the study improved the classification accuracy of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太极完成签到,获得积分10
6秒前
10秒前
11秒前
11秒前
张晓祁完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
huahuahahajiu完成签到 ,获得积分10
18秒前
20秒前
huahuahahajiu关注了科研通微信公众号
23秒前
Hello应助跳跃采纳,获得10
23秒前
25秒前
27秒前
yueying完成签到,获得积分10
27秒前
29秒前
领导范儿应助撒旦asd采纳,获得10
31秒前
mort发布了新的文献求助10
32秒前
海侠子完成签到,获得积分10
35秒前
困得晕乎乎完成签到,获得积分10
37秒前
41秒前
李健应助叶子宁采纳,获得10
42秒前
48秒前
俭朴的无色完成签到,获得积分10
49秒前
科研通AI6.1应助qiqi1111采纳,获得10
59秒前
1分钟前
1分钟前
qiqi1111完成签到,获得积分10
1分钟前
Allez应助信陵君无忌采纳,获得10
1分钟前
科研通AI6应助信陵君无忌采纳,获得10
1分钟前
qiqi1111发布了新的文献求助10
1分钟前
信陵君无忌完成签到,获得积分10
1分钟前
1分钟前
1分钟前
向北要上岸完成签到 ,获得积分10
1分钟前
科研通AI6.1应助文献自由采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
文献自由发布了新的文献求助10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
852应助读书的时候采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289