已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-throughput phenotyping using VIS/NIR spectroscopy in the classification of soybean genotypes for grain yield and industrial traits

C4.5算法 产量(工程) 随机区组设计 随机森林 高光谱成像 支持向量机 农学 数学 生物 统计 人工智能 遥感 计算机科学 材料科学 地理 朴素贝叶斯分类器 冶金
作者
Dthenifer Cordeiro Santana,Izabela Cristina de Oliveira,João Lucas Gouveia de Oliveira,Fábio Henrique Rojo Baio,Larissa Pereira Ribeiro Teodoro,Carlos Antônio da Silva,Ana Carina Candido Seron,Luís Carlos Vinhas Ítavo,Paulo Carteri Coradi,Paulo Eduardo Teodoro
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:310: 123963-123963 被引量:7
标识
DOI:10.1016/j.saa.2024.123963
摘要

Employing visible and near infrared sensors in high-throughput phenotyping provides insight into the relationship between the spectral characteristics of the leaf and the content of grain properties, helping soybean breeders to direct their program towards improving grain traits according to researchers' interests. Our research hypothesis is that the leaf reflectance of soybean genotypes can be directly related to industrial grain traits such as protein and fiber contents. Thus, the objectives of the study were: (i) to classify soybean genotypes according to the grain yield and industrial traits; (ii) to identify the algorithm(s) with the highest accuracy for classifying genotypes using leaf reflectance as model input; (iii) to identify the best input data for the algorithms to improve their performance. A field experiment was carried out in randomized block design with three replications and 32 soybean genotypes. At 60 days after emergence, spectral analysis was carried out on three leaf samples from each plot. A hyperspectral sensor was used to capture reflectance between the wavelengths from 450 to 824 nm. Representative spectral bands were selected and grouped into means. After harvest, grain yield was assessed and laboratory analyses of industrial traits were carried out. Spectral, industrial traits and yield data were subjected to statistical analysis. Data were analyzed by the following machine learning algorithms: J48 (J48) and REPTree (DT) decision trees, Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and conventional Logistic Regression (LR) analysis. The clusters formed were used as the output of the models, while two groups of input data were used for the input of the models: the spectral variables (WL) noise-free obtained by the sensor (450–828 nm) and the spectral means of the selected bands (SB) (450.0–720.6 nm). Soybean genotypes were grouped according to their grain yield and industrial traits, in which the SVM and J48 algorithms performed better at classifying them. Using the spectral bands selected in the study improved the classification accuracy of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
健忘的溪灵完成签到 ,获得积分10
4秒前
4秒前
Shiyuzz完成签到,获得积分10
6秒前
文静的峻熙完成签到,获得积分10
6秒前
Ca发布了新的文献求助10
7秒前
wzq发布了新的文献求助10
8秒前
丘比特应助cara33采纳,获得20
9秒前
sky发布了新的文献求助10
9秒前
russing完成签到 ,获得积分10
11秒前
儿学化学打断腿完成签到,获得积分10
11秒前
常绝山完成签到 ,获得积分10
11秒前
完美世界应助CCccCCC采纳,获得10
14秒前
14秒前
14秒前
wangli完成签到,获得积分10
15秒前
Ca完成签到,获得积分10
15秒前
16秒前
壮观不斜发布了新的文献求助10
18秒前
18秒前
二三发布了新的文献求助10
19秒前
NSS发布了新的文献求助10
19秒前
天宁发布了新的文献求助10
20秒前
大个应助deway采纳,获得10
20秒前
22秒前
cara33发布了新的文献求助20
22秒前
量子星尘发布了新的文献求助10
23秒前
保持好心情完成签到 ,获得积分10
25秒前
二三完成签到,获得积分10
26秒前
天宁完成签到,获得积分20
26秒前
CCccCCC发布了新的文献求助10
27秒前
Takahara2000应助WENWEN采纳,获得10
27秒前
28秒前
28秒前
31秒前
科研通AI6应助科研通管家采纳,获得30
32秒前
慕青应助科研通管家采纳,获得10
32秒前
GingerF应助科研通管家采纳,获得50
32秒前
共享精神应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869185
求助须知:如何正确求助?哪些是违规求助? 4160301
关于积分的说明 12901202
捐赠科研通 3914903
什么是DOI,文献DOI怎么找? 2150119
邀请新用户注册赠送积分活动 1168536
关于科研通互助平台的介绍 1071117