已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-throughput phenotyping using VIS/NIR spectroscopy in the classification of soybean genotypes for grain yield and industrial traits

C4.5算法 产量(工程) 随机区组设计 随机森林 高光谱成像 支持向量机 农学 数学 生物 统计 人工智能 遥感 计算机科学 材料科学 地理 朴素贝叶斯分类器 冶金
作者
Dthenifer Cordeiro Santana,Izabela Cristina de Oliveira,João Lucas Gouveia de Oliveira,Fábio Henrique Rojo Baio,Larissa Pereira Ribeiro Teodoro,Carlos Antônio da Silva,Ana Carina Candido Seron,Luís Carlos Vinhas Ítavo,Paulo Carteri Coradi,Paulo Eduardo Teodoro
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:310: 123963-123963 被引量:7
标识
DOI:10.1016/j.saa.2024.123963
摘要

Employing visible and near infrared sensors in high-throughput phenotyping provides insight into the relationship between the spectral characteristics of the leaf and the content of grain properties, helping soybean breeders to direct their program towards improving grain traits according to researchers' interests. Our research hypothesis is that the leaf reflectance of soybean genotypes can be directly related to industrial grain traits such as protein and fiber contents. Thus, the objectives of the study were: (i) to classify soybean genotypes according to the grain yield and industrial traits; (ii) to identify the algorithm(s) with the highest accuracy for classifying genotypes using leaf reflectance as model input; (iii) to identify the best input data for the algorithms to improve their performance. A field experiment was carried out in randomized block design with three replications and 32 soybean genotypes. At 60 days after emergence, spectral analysis was carried out on three leaf samples from each plot. A hyperspectral sensor was used to capture reflectance between the wavelengths from 450 to 824 nm. Representative spectral bands were selected and grouped into means. After harvest, grain yield was assessed and laboratory analyses of industrial traits were carried out. Spectral, industrial traits and yield data were subjected to statistical analysis. Data were analyzed by the following machine learning algorithms: J48 (J48) and REPTree (DT) decision trees, Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and conventional Logistic Regression (LR) analysis. The clusters formed were used as the output of the models, while two groups of input data were used for the input of the models: the spectral variables (WL) noise-free obtained by the sensor (450–828 nm) and the spectral means of the selected bands (SB) (450.0–720.6 nm). Soybean genotypes were grouped according to their grain yield and industrial traits, in which the SVM and J48 algorithms performed better at classifying them. Using the spectral bands selected in the study improved the classification accuracy of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大恐龙的噗噗完成签到,获得积分10
1秒前
6秒前
科研鼠完成签到 ,获得积分10
9秒前
小v完成签到 ,获得积分10
9秒前
22秒前
英俊的铭应助T1aNer299采纳,获得10
23秒前
爱学习的小李完成签到 ,获得积分10
26秒前
GRG完成签到 ,获得积分0
27秒前
顺利寄文完成签到,获得积分10
30秒前
jianhan完成签到,获得积分10
30秒前
Demi_Ming完成签到,获得积分10
32秒前
哑巴和喇叭完成签到 ,获得积分10
35秒前
37秒前
dldldldl完成签到 ,获得积分20
42秒前
T1aNer299发布了新的文献求助10
43秒前
小林同学0219完成签到 ,获得积分10
45秒前
LLL发布了新的文献求助10
45秒前
Carmen完成签到,获得积分10
51秒前
ANG完成签到 ,获得积分10
51秒前
55秒前
酒渡完成签到,获得积分10
55秒前
sandra发布了新的文献求助10
56秒前
nbing完成签到,获得积分10
1分钟前
Esther应助dawn采纳,获得10
1分钟前
1分钟前
BW完成签到,获得积分10
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
CHERIE发布了新的文献求助10
1分钟前
科研通AI2S应助T1aNer299采纳,获得10
1分钟前
小二郎应助sandra采纳,获得10
1分钟前
LXF关闭了LXF文献求助
1分钟前
yuan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CHERIE完成签到,获得积分10
1分钟前
1分钟前
在水一方应助耳东陈采纳,获得10
1分钟前
善学以致用应助英勇羿采纳,获得10
1分钟前
居居发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519