High-throughput phenotyping using VIS/NIR spectroscopy in the classification of soybean genotypes for grain yield and industrial traits

C4.5算法 产量(工程) 随机区组设计 随机森林 高光谱成像 支持向量机 农学 数学 生物 统计 人工智能 遥感 计算机科学 材料科学 地理 冶金 朴素贝叶斯分类器
作者
Dthenifer Cordeiro Santana,Izabela Cristina de Oliveira,João Lucas Gouveia de Oliveira,Fábio Henrique Rojo Baio,Larissa Pereira Ribeiro Teodoro,Carlos Antônio da Silva,Ana Carina Candido Seron,Luís Carlos Vinhas Ítavo,Paulo Carteri Coradi,Paulo Eduardo Teodoro
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:310: 123963-123963 被引量:3
标识
DOI:10.1016/j.saa.2024.123963
摘要

Employing visible and near infrared sensors in high-throughput phenotyping provides insight into the relationship between the spectral characteristics of the leaf and the content of grain properties, helping soybean breeders to direct their program towards improving grain traits according to researchers' interests. Our research hypothesis is that the leaf reflectance of soybean genotypes can be directly related to industrial grain traits such as protein and fiber contents. Thus, the objectives of the study were: (i) to classify soybean genotypes according to the grain yield and industrial traits; (ii) to identify the algorithm(s) with the highest accuracy for classifying genotypes using leaf reflectance as model input; (iii) to identify the best input data for the algorithms to improve their performance. A field experiment was carried out in randomized block design with three replications and 32 soybean genotypes. At 60 days after emergence, spectral analysis was carried out on three leaf samples from each plot. A hyperspectral sensor was used to capture reflectance between the wavelengths from 450 to 824 nm. Representative spectral bands were selected and grouped into means. After harvest, grain yield was assessed and laboratory analyses of industrial traits were carried out. Spectral, industrial traits and yield data were subjected to statistical analysis. Data were analyzed by the following machine learning algorithms: J48 (J48) and REPTree (DT) decision trees, Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and conventional Logistic Regression (LR) analysis. The clusters formed were used as the output of the models, while two groups of input data were used for the input of the models: the spectral variables (WL) noise-free obtained by the sensor (450–828 nm) and the spectral means of the selected bands (SB) (450.0–720.6 nm). Soybean genotypes were grouped according to their grain yield and industrial traits, in which the SVM and J48 algorithms performed better at classifying them. Using the spectral bands selected in the study improved the classification accuracy of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Opse完成签到,获得积分0
刚刚
呼延水云发布了新的文献求助10
1秒前
1秒前
1秒前
Aaron_Leclerc发布了新的文献求助10
2秒前
华仔应助bcb采纳,获得10
2秒前
NexusExplorer应助淡然的大碗采纳,获得10
2秒前
3秒前
安详的海风完成签到,获得积分10
4秒前
5秒前
没有昵称发布了新的文献求助10
5秒前
6秒前
lyh发布了新的文献求助10
6秒前
吴小苏发布了新的文献求助10
6秒前
pain豆先生完成签到 ,获得积分10
8秒前
我喜欢大学霸应助李锐采纳,获得10
8秒前
烟花应助灵巧大地采纳,获得10
9秒前
10秒前
SYLH应助咕噜咕噜采纳,获得10
10秒前
10秒前
Lancet发布了新的文献求助10
10秒前
远航完成签到,获得积分10
10秒前
11秒前
李二牛完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
小马甲应助linmo采纳,获得10
12秒前
乐乐应助研友_8RyzBZ采纳,获得10
13秒前
领导范儿应助laxy采纳,获得10
14秒前
14秒前
15秒前
sunshine发布了新的文献求助10
15秒前
Cindy发布了新的文献求助30
16秒前
华仔应助科研通管家采纳,获得10
16秒前
华123应助科研通管家采纳,获得10
16秒前
Rondab应助科研通管家采纳,获得10
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824