Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks

材料科学 自愈水凝胶 变硬 非线性系统 聚合物 复合材料 模数 剪切模量 粘弹性 高分子化学 量子力学 物理
作者
Elisabeth Prince,Sofia M. Morozova,Zhengkun Chen,Vahid Adibnia,Ilya Yakavets,Sergey Panyukov,Michael Rubinstein,Eugenia Kumacheva
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (51) 被引量:1
标识
DOI:10.1073/pnas.2220755120
摘要

Fibrous networks formed by biological polymers such as collagen or fibrin exhibit nonlinear mechanical behavior. They undergo strong stiffening in response to weak shear and elongational strains, but soften under compressional strain, in striking difference with the response to the deformation of flexible-strand networks formed by molecules. The nonlinear properties of fibrous networks are attributed to the mechanical asymmetry of the constituent filaments, for which a stretching modulus is significantly larger than the bending modulus. Studies of the nonlinear mechanical behavior are generally performed on hydrogels formed by biological polymers, which offers limited control over network architecture. Here, we report an engineered covalently cross-linked nanofibrillar hydrogel derived from cellulose nanocrystals and gelatin. The variation in hydrogel composition provided a broad-range change in its shear modulus. The hydrogel exhibited both shear-stiffening and compression-induced softening, in agreement with the predictions of the affine model. The threshold nonlinear stress and strain were universal for the hydrogels with different compositions, which suggested that nonlinear mechanical properties are general for networks formed by rigid filaments. The experimental results were in agreement with an affine model describing deformation of the network formed by rigid filaments. Our results lend insight into the structural features that govern the nonlinear biomechanics of fibrous networks and provide a platform for future studies of the biological impact of nonlinear mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江江江完成签到 ,获得积分10
刚刚
宋凤娇发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助zz采纳,获得10
2秒前
2秒前
zxe完成签到,获得积分10
3秒前
酷波er应助紧张的毛衣采纳,获得10
3秒前
JamesPei应助烦烦采纳,获得10
4秒前
七一桉发布了新的文献求助10
4秒前
LM发布了新的文献求助10
4秒前
燕子完成签到,获得积分10
4秒前
Anyfly完成签到 ,获得积分10
5秒前
vv发布了新的文献求助10
6秒前
汉堡包应助zhouti497541171采纳,获得30
7秒前
橙花发布了新的文献求助10
8秒前
脑洞疼应助jide采纳,获得10
9秒前
9秒前
粗暴的小熊猫完成签到 ,获得积分10
9秒前
10秒前
orange完成签到 ,获得积分20
10秒前
10秒前
11秒前
12秒前
浮华完成签到,获得积分10
12秒前
wangdan完成签到,获得积分10
12秒前
lianhe发布了新的文献求助10
13秒前
14秒前
feiCheung发布了新的文献求助10
14秒前
14秒前
田様应助yuan采纳,获得10
14秒前
15秒前
15秒前
zhaoty发布了新的文献求助10
15秒前
充电宝应助喵喵大王采纳,获得10
16秒前
笑点低的梦槐完成签到,获得积分10
16秒前
天天完成签到 ,获得积分10
16秒前
科目三应助宋凤娇采纳,获得10
17秒前
杨璐骏发布了新的文献求助10
17秒前
17秒前
Geminiwod发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251653
求助须知:如何正确求助?哪些是违规求助? 4415731
关于积分的说明 13747051
捐赠科研通 4287495
什么是DOI,文献DOI怎么找? 2352481
邀请新用户注册赠送积分活动 1349315
关于科研通互助平台的介绍 1308791