A Fully Automated Artificial Intelligence System to Assist Pathologists’ Diagnosis to Predict Histologically High-grade Urothelial Carcinoma from Digitized Urine Cytology Slides Using Deep Learning

医学 尿细胞学 一致性 细胞学 尿路上皮癌 活检 病理 尿 放射科 泌尿系统 泌尿科 膀胱癌 内科学 膀胱镜检查 癌症
作者
Keisuke Tsuji,Masatomo Kaneko,Yuki Harada,Atsuko Fujihara,Kengo Ueno,Masaya Nakanishi,Eiichi Konishi,Tetsuro Takamatsu,Go Horiguchi,Satoshi Teramukai,Toshiko Ito‐Ihara,Osamu Ukimura
出处
期刊:European Urology Oncology [Elsevier]
卷期号:7 (2): 258-265 被引量:5
标识
DOI:10.1016/j.euo.2023.11.009
摘要

Urine cytology, although a useful screening method for urothelial carcinoma, lacks sensitivity. As an emerging technology, artificial intelligence (AI) improved image analysis accuracy significantly. To develop a fully automated AI system to assist pathologists in the histological prediction of high-grade urothelial carcinoma (HGUC) from digitized urine cytology slides. We digitized 535 consecutive urine cytology slides for AI use. Among these slides, 181 were used for AI development, 39 were used as AI test data to identify HGUC by cell-level classification, and 315 were used as AI test data for slide-level classification. Out of the 315 slides, 171 were collected immediately prior to bladder biopsy or transurethral resection of bladder tumor, and then outcomes were compared with the histological presence of HGUC in the surgical specimen. The primary aim was to compare AI prediction of the histological presence of HGUC with the pathologist's histological diagnosis of HGUC. Secondary aims were to compare the time required for AI evaluation and concordance between the AI's classification and pathologist's cytology diagnosis. The AI capability for predicting the histological presence of HGUC was 0.78 for the area under the curve. Comparing the AI predictive performance with pathologists' diagnosis, the AI sensitivity of 63% for histological HGUC prediction was superior to a pathologists' cytology sensitivity of 46% (p = 0.0037). On the contrary, there was no significant difference between the AI specificity of 83% and pathologists' specificity of 89% (p = 0.13), and AI accuracy of 74% and pathologists' accuracy of 68% (p = 0.08). The time required for AI evaluation was 139 s. With respect to the concordance between the AI prediction and pathologist's cytology diagnosis, the accuracy was 86%. Agreements with positive and negative findings were 92% and 84%, respectively. We developed a fully automated AI system to assist pathologists' histological diagnosis of HGUC using digitized slides. This AI system showed significantly higher sensitivity than a board-certified cytopathologist and may assist pathologists in making urine cytology diagnoses, reducing their workload. In this study, we present a deep learning–based artificial intelligence (AI) system that classifies urine cytology slides according to the Paris system. An automated AI system was developed and validated with 535 consecutive urine cytology slides. The AI predicted histological high-grade urothelial carcinoma from digitized urine cytology slides with superior sensitivity than pathologists, while maintaining comparable specificity and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无问完成签到,获得积分10
2秒前
彭于晏应助霸王学习机采纳,获得10
2秒前
研友_Z63G18完成签到 ,获得积分10
2秒前
3秒前
Popeye应助knn采纳,获得10
3秒前
芙瑞完成签到 ,获得积分10
3秒前
想吃螺蛳粉应助11采纳,获得10
5秒前
小蘑菇应助风轩轩采纳,获得10
7秒前
英勇的翠霜完成签到,获得积分10
7秒前
汉堡包应助个性的涫采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
guojingjing发布了新的文献求助10
9秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
10秒前
lllllty完成签到,获得积分10
10秒前
周周完成签到 ,获得积分10
11秒前
烟花应助itharmony采纳,获得10
11秒前
香蕉梨愁发布了新的文献求助10
11秒前
老李完成签到,获得积分10
13秒前
2号完成签到,获得积分10
13秒前
王粒伊完成签到,获得积分10
14秒前
sst完成签到,获得积分10
15秒前
15秒前
充电宝应助MHR采纳,获得10
17秒前
19秒前
玩命的白亦关注了科研通微信公众号
19秒前
tim发布了新的文献求助10
19秒前
20秒前
21秒前
lucky完成签到 ,获得积分10
21秒前
李健应助小海棉采纳,获得10
22秒前
瘦瘦雅香完成签到,获得积分10
22秒前
22秒前
敏感远锋完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
melody发布了新的文献求助10
25秒前
善学以致用应助香蕉梨愁采纳,获得10
25秒前
ll发布了新的文献求助20
26秒前
xxx发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299