A Fully Automated Artificial Intelligence System to Assist Pathologists’ Diagnosis to Predict Histologically High-grade Urothelial Carcinoma from Digitized Urine Cytology Slides Using Deep Learning

医学 尿细胞学 一致性 细胞学 尿路上皮癌 活检 病理 尿 放射科 泌尿系统 泌尿科 膀胱癌 内科学 膀胱镜检查 癌症
作者
Keisuke Tsuji,Masatomo Kaneko,Yuki Harada,Atsuko Fujihara,Kengo Ueno,Masaya Nakanishi,Eiichi Konishi,Tetsuro Takamatsu,Go Horiguchi,Satoshi Teramukai,Toshiko Ito‐Ihara,Osamu Ukimura
出处
期刊:European Urology Oncology [Elsevier BV]
卷期号:7 (2): 258-265 被引量:5
标识
DOI:10.1016/j.euo.2023.11.009
摘要

Urine cytology, although a useful screening method for urothelial carcinoma, lacks sensitivity. As an emerging technology, artificial intelligence (AI) improved image analysis accuracy significantly. To develop a fully automated AI system to assist pathologists in the histological prediction of high-grade urothelial carcinoma (HGUC) from digitized urine cytology slides. We digitized 535 consecutive urine cytology slides for AI use. Among these slides, 181 were used for AI development, 39 were used as AI test data to identify HGUC by cell-level classification, and 315 were used as AI test data for slide-level classification. Out of the 315 slides, 171 were collected immediately prior to bladder biopsy or transurethral resection of bladder tumor, and then outcomes were compared with the histological presence of HGUC in the surgical specimen. The primary aim was to compare AI prediction of the histological presence of HGUC with the pathologist's histological diagnosis of HGUC. Secondary aims were to compare the time required for AI evaluation and concordance between the AI's classification and pathologist's cytology diagnosis. The AI capability for predicting the histological presence of HGUC was 0.78 for the area under the curve. Comparing the AI predictive performance with pathologists' diagnosis, the AI sensitivity of 63% for histological HGUC prediction was superior to a pathologists' cytology sensitivity of 46% (p = 0.0037). On the contrary, there was no significant difference between the AI specificity of 83% and pathologists' specificity of 89% (p = 0.13), and AI accuracy of 74% and pathologists' accuracy of 68% (p = 0.08). The time required for AI evaluation was 139 s. With respect to the concordance between the AI prediction and pathologist's cytology diagnosis, the accuracy was 86%. Agreements with positive and negative findings were 92% and 84%, respectively. We developed a fully automated AI system to assist pathologists' histological diagnosis of HGUC using digitized slides. This AI system showed significantly higher sensitivity than a board-certified cytopathologist and may assist pathologists in making urine cytology diagnoses, reducing their workload. In this study, we present a deep learning–based artificial intelligence (AI) system that classifies urine cytology slides according to the Paris system. An automated AI system was developed and validated with 535 consecutive urine cytology slides. The AI predicted histological high-grade urothelial carcinoma from digitized urine cytology slides with superior sensitivity than pathologists, while maintaining comparable specificity and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BWL完成签到,获得积分10
刚刚
葱葱不吃葱完成签到 ,获得积分10
刚刚
1秒前
二枫忆桑完成签到,获得积分10
1秒前
ddd关闭了ddd文献求助
1秒前
柚子完成签到 ,获得积分10
1秒前
凸迩丝儿发布了新的文献求助10
1秒前
1秒前
Mayday完成签到,获得积分10
1秒前
qqj完成签到,获得积分20
1秒前
2秒前
2秒前
莫遥发布了新的文献求助10
3秒前
3秒前
A阿澍完成签到,获得积分10
3秒前
wy.he应助笑点低的紫采纳,获得20
3秒前
秦尔晗完成签到,获得积分10
3秒前
river_121发布了新的文献求助10
3秒前
4秒前
4秒前
糖豆子完成签到,获得积分10
4秒前
4秒前
Percy完成签到 ,获得积分10
4秒前
夜阑卧听完成签到,获得积分10
5秒前
5秒前
Organum完成签到 ,获得积分20
5秒前
巨汉发布了新的文献求助10
5秒前
5秒前
beikou发布了新的文献求助10
6秒前
赵雨霏完成签到 ,获得积分10
6秒前
hyominhsu发布了新的文献求助10
6秒前
科研鬼才完成签到 ,获得积分10
6秒前
7秒前
LiAlan发布了新的文献求助10
7秒前
刘畅发布了新的文献求助10
7秒前
852应助迷人的学术妲己采纳,获得10
7秒前
lichee完成签到,获得积分10
7秒前
夏晴晴发布了新的文献求助30
8秒前
wbgwudi完成签到,获得积分10
8秒前
顾矜应助SHUIw采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769