A Fully Automated Artificial Intelligence System to Assist Pathologists’ Diagnosis to Predict Histologically High-grade Urothelial Carcinoma from Digitized Urine Cytology Slides Using Deep Learning

医学 尿细胞学 一致性 细胞学 尿路上皮癌 活检 病理 尿 放射科 泌尿系统 泌尿科 膀胱癌 内科学 膀胱镜检查 癌症
作者
Keisuke Tsuji,Masatomo Kaneko,Yuki Harada,Atsuko Fujihara,Kengo Ueno,Masaya Nakanishi,Eiichi Konishi,Tetsuro Takamatsu,Go Horiguchi,Satoshi Teramukai,Toshiko Ito‐Ihara,Osamu Ukimura
出处
期刊:European Urology Oncology [Elsevier BV]
卷期号:7 (2): 258-265 被引量:5
标识
DOI:10.1016/j.euo.2023.11.009
摘要

Urine cytology, although a useful screening method for urothelial carcinoma, lacks sensitivity. As an emerging technology, artificial intelligence (AI) improved image analysis accuracy significantly. To develop a fully automated AI system to assist pathologists in the histological prediction of high-grade urothelial carcinoma (HGUC) from digitized urine cytology slides. We digitized 535 consecutive urine cytology slides for AI use. Among these slides, 181 were used for AI development, 39 were used as AI test data to identify HGUC by cell-level classification, and 315 were used as AI test data for slide-level classification. Out of the 315 slides, 171 were collected immediately prior to bladder biopsy or transurethral resection of bladder tumor, and then outcomes were compared with the histological presence of HGUC in the surgical specimen. The primary aim was to compare AI prediction of the histological presence of HGUC with the pathologist's histological diagnosis of HGUC. Secondary aims were to compare the time required for AI evaluation and concordance between the AI's classification and pathologist's cytology diagnosis. The AI capability for predicting the histological presence of HGUC was 0.78 for the area under the curve. Comparing the AI predictive performance with pathologists' diagnosis, the AI sensitivity of 63% for histological HGUC prediction was superior to a pathologists' cytology sensitivity of 46% (p = 0.0037). On the contrary, there was no significant difference between the AI specificity of 83% and pathologists' specificity of 89% (p = 0.13), and AI accuracy of 74% and pathologists' accuracy of 68% (p = 0.08). The time required for AI evaluation was 139 s. With respect to the concordance between the AI prediction and pathologist's cytology diagnosis, the accuracy was 86%. Agreements with positive and negative findings were 92% and 84%, respectively. We developed a fully automated AI system to assist pathologists' histological diagnosis of HGUC using digitized slides. This AI system showed significantly higher sensitivity than a board-certified cytopathologist and may assist pathologists in making urine cytology diagnoses, reducing their workload. In this study, we present a deep learning–based artificial intelligence (AI) system that classifies urine cytology slides according to the Paris system. An automated AI system was developed and validated with 535 consecutive urine cytology slides. The AI predicted histological high-grade urothelial carcinoma from digitized urine cytology slides with superior sensitivity than pathologists, while maintaining comparable specificity and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何浏亮完成签到,获得积分10
2秒前
阿成完成签到,获得积分10
2秒前
Pauline完成签到 ,获得积分10
2秒前
3秒前
微笑的语芙完成签到,获得积分10
3秒前
3秒前
小背包完成签到 ,获得积分10
3秒前
水寒发布了新的文献求助10
5秒前
希望天下0贩的0应助17采纳,获得10
5秒前
yu完成签到 ,获得积分10
5秒前
钟瑞乾完成签到,获得积分10
5秒前
花痴的电灯泡完成签到,获得积分10
6秒前
虚心念桃完成签到,获得积分10
7秒前
jiaolulu发布了新的文献求助10
8秒前
zyw完成签到 ,获得积分10
8秒前
ironsilica完成签到,获得积分10
11秒前
12秒前
被动科研完成签到,获得积分10
14秒前
斗牛的番茄完成签到 ,获得积分10
15秒前
所所应助时尚俊驰采纳,获得10
15秒前
zgt01发布了新的文献求助10
19秒前
背后如彤完成签到 ,获得积分10
21秒前
22秒前
通通通完成签到,获得积分10
23秒前
李治海完成签到,获得积分10
23秒前
诸葛烤鸭完成签到,获得积分10
23秒前
君君完成签到 ,获得积分10
24秒前
long0809完成签到,获得积分10
24秒前
勤劳寒烟完成签到,获得积分10
26秒前
明亮凡梦发布了新的文献求助10
27秒前
fat完成签到,获得积分10
28秒前
28秒前
28秒前
ocean完成签到,获得积分10
29秒前
Jasper应助jiaolulu采纳,获得10
30秒前
30秒前
亚亚完成签到 ,获得积分10
31秒前
13击完成签到,获得积分10
32秒前
Lucario发布了新的文献求助10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022