In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All‐Hydrogel Supercapacitors with Low‐Temperature Adaptability

超级电容器 电解质 自愈水凝胶 材料科学 原位聚合 储能 聚合 电极 电容 化学工程 纳米技术 高分子化学 复合材料 聚合物 化学 量子力学 物理 工程类 物理化学 功率(物理)
作者
Yijing Zhang,Yue Sun,Jingya Nan,Fusheng Yang,Zihao Wang,Yuxi Li,Chuchu Wang,Fuxiang Chu,Yupeng Liu,Chunpeng Wang
出处
期刊:Small [Wiley]
卷期号:20 (22) 被引量:10
标识
DOI:10.1002/smll.202309900
摘要

Abstract All‐hydrogel supercapacitors are emerging as promising power sources for next‐generation wearable electronics due to their intrinsic mechanical flexibility, eco‐friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all‐hydrogel supercapacitors. Here, an all‐hydrogel supercapacitor is reported with robust interfacial contact and anti‐freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl 2 ) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all‐hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to –60 °C. Such all‐hydrogel supercapacitor demonstrates satisfactory low‐temperature electrochemical performance, delivering a high energy density of 11 mWh cm −2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at −40 °C. Notably, the fabricated all‐hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at −40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low‐temperature adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助JUSTs0so采纳,获得10
刚刚
Beth完成签到,获得积分10
刚刚
粥粥发布了新的文献求助10
1秒前
1秒前
庞威完成签到 ,获得积分10
1秒前
2秒前
吕春雨完成签到,获得积分10
2秒前
Grayball应助ccc采纳,获得10
2秒前
3秒前
3秒前
勖勖完成签到,获得积分10
3秒前
邵裘发布了新的文献求助10
3秒前
3秒前
饕餮完成签到,获得积分10
4秒前
5秒前
wangg发布了新的文献求助10
5秒前
大个应助勤恳的依丝采纳,获得10
6秒前
星星发布了新的文献求助10
6秒前
spray发布了新的文献求助30
6秒前
LZJ完成签到,获得积分10
6秒前
7秒前
YE发布了新的文献求助30
7秒前
MHB应助叫滚滚采纳,获得10
8秒前
wzxxxx发布了新的文献求助10
8秒前
斯文败类应助勤劳傲晴采纳,获得10
9秒前
shilong.yang发布了新的文献求助10
9秒前
momo完成签到,获得积分10
10秒前
wxp_bioinfo完成签到,获得积分10
11秒前
11秒前
桐桐应助wangg采纳,获得10
11秒前
Jun完成签到,获得积分10
12秒前
芝士的酒发布了新的文献求助50
12秒前
13秒前
赘婿应助复杂的问玉采纳,获得30
13秒前
14秒前
14秒前
15秒前
端庄白开水完成签到,获得积分10
15秒前
吕春雨发布了新的文献求助10
15秒前
大个应助wxp_bioinfo采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808