A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration

校准 计算机科学 进化算法 机器人 进化计算 算法 人工智能 数学 统计
作者
Tinghui Chen,Shuai Li,Yan Qiao,Xin Luo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:5
标识
DOI:10.1109/tim.2024.3363783
摘要

Industrial robots are regarded as the essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm. However, existing calibrators are mostly based on an EC algorithm with a homogeneous learning scheme, which may lead to performance loss due to limited searching ability. On the other hand, the existing hybrid algorithm schemes based on multiple EC algorithms mostly work by training different base-models with different EC algorithms and then building the ensemble for performance gain, which leads to high computational and storage costs. Motivated by these discoveries, this paper proposes a novel Hybrid-of-Evolutionary-Schemes (HOEs) model with three-fold ideas: a) aggregating the principle of six different EC algorithms' learning schemes to build a hybrid evolution scheme, where the learning scheme of each EC algorithm is adopted to make the swarm evolve in sequence, thereby building an expert ensemble where each expert's learning is taken based on previous results for establishing high calibration accuracy; b) establishing a memory system that consists of diversified and highly efficient individuals in a specific population during the update process of each expert for obtaining the solution diversity; c) designing a punishment system to dismiss the experts with poor calibration performance to achieve high computational efficiency. The convergence of the HOEs model is rigorously proved in theory. To validate its performance, a large dataset HSR-C has been established and published for industrial robot calibration. Empirical studies on HSR-C demonstrate that the proposed HOEs model outperforms several state-of-the-art algorithms (including both sole algorithms and HOEs model's variants) in terms of calibration accuracy, which strongly supports its potential in addressing calibration issues for industrial robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lwj发布了新的文献求助10
1秒前
taoliu发布了新的文献求助10
1秒前
诚c完成签到,获得积分10
1秒前
bkagyin应助wrx采纳,获得10
2秒前
Jasper应助大气乐儿采纳,获得10
3秒前
落雨冥完成签到,获得积分10
3秒前
4秒前
Yakamoz发布了新的文献求助10
4秒前
4秒前
哈哈哥完成签到,获得积分10
4秒前
研友_Z1xbgn发布了新的文献求助10
5秒前
有趣的银发布了新的文献求助10
5秒前
5秒前
完美世界应助makabka采纳,获得10
5秒前
6秒前
无所不能的虫虫完成签到,获得积分10
6秒前
cxc发布了新的文献求助10
7秒前
7秒前
7秒前
mavissss完成签到,获得积分10
7秒前
8秒前
MEST给MEST的求助进行了留言
9秒前
9秒前
9秒前
只只完成签到 ,获得积分10
10秒前
辛涩发布了新的文献求助10
10秒前
领导范儿应助zzzwederfrft采纳,获得10
10秒前
知道发布了新的文献求助10
11秒前
叙温雨发布了新的文献求助10
12秒前
wrx发布了新的文献求助10
12秒前
FFFY发布了新的文献求助10
13秒前
M1aMaey完成签到,获得积分10
13秒前
13秒前
归一发布了新的文献求助30
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
小白应助科研通管家采纳,获得30
14秒前
Andy_Cheung应助科研通管家采纳,获得10
15秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3720194
求助须知:如何正确求助?哪些是违规求助? 3266452
关于积分的说明 9943666
捐赠科研通 2980099
什么是DOI,文献DOI怎么找? 1634645
邀请新用户注册赠送积分活动 775932
科研通“疑难数据库(出版商)”最低求助积分说明 745950