TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程程完成签到,获得积分10
刚刚
1秒前
吃人不眨眼应助羊六七采纳,获得20
2秒前
扶苏发布了新的文献求助10
2秒前
2秒前
末鸭梨发布了新的文献求助10
2秒前
3秒前
独特四娘发布了新的文献求助10
3秒前
体贴的戾完成签到,获得积分10
3秒前
jia发布了新的文献求助10
3秒前
情怀应助酷狗小熊采纳,获得30
4秒前
xuxuux完成签到,获得积分10
4秒前
晶晶完成签到,获得积分10
4秒前
sdwdw完成签到,获得积分20
4秒前
4秒前
hh完成签到,获得积分10
5秒前
科研通AI2S应助莫宝采纳,获得30
5秒前
美女完成签到,获得积分10
6秒前
Thadea关注了科研通微信公众号
6秒前
coco发布了新的文献求助10
6秒前
6秒前
sdwdw发布了新的文献求助10
7秒前
老杨完成签到,获得积分10
7秒前
chifer关注了科研通微信公众号
7秒前
roy2929发布了新的文献求助20
7秒前
今后应助醉熏的小伙采纳,获得10
8秒前
魔人啾啾完成签到,获得积分10
8秒前
吴开珍发布了新的文献求助30
9秒前
哆啦A梦发布了新的文献求助10
9秒前
刘荣圣发布了新的文献求助10
9秒前
田様应助肖敏采纳,获得10
9秒前
10秒前
10秒前
xiaowentu完成签到,获得积分10
10秒前
easyaction完成签到,获得积分10
11秒前
酷波er应助qiyihan采纳,获得10
12秒前
小马甲应助敬之采纳,获得10
12秒前
正一笑完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688