重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
alei1203完成签到,获得积分10
刚刚
雪12229发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
维洛尼亚发布了新的文献求助10
1秒前
福尔丘完成签到,获得积分10
1秒前
1秒前
无恙完成签到,获得积分20
2秒前
大白熊完成签到 ,获得积分10
2秒前
iberis发布了新的文献求助10
2秒前
huangchenxi发布了新的文献求助10
2秒前
无骨鸡爪不长胖完成签到,获得积分10
2秒前
深情安青应助个性跳跳糖采纳,获得10
2秒前
kg5g发布了新的文献求助10
3秒前
烟花应助糊里糊涂采纳,获得10
3秒前
甜美的沅完成签到 ,获得积分10
3秒前
3秒前
十二完成签到 ,获得积分10
4秒前
宁雨蕾发布了新的文献求助10
4秒前
4秒前
桐桐应助马伊采纳,获得10
4秒前
Gnor发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
大模型应助曹梦梦采纳,获得10
5秒前
平淡的豁发布了新的文献求助10
5秒前
DDD完成签到,获得积分10
5秒前
无恙发布了新的文献求助10
6秒前
6秒前
的卢小马完成签到 ,获得积分10
6秒前
mescal发布了新的文献求助10
6秒前
6秒前
CipherSage应助liuy03采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590