TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦克阿瑟发布了新的文献求助50
1秒前
1秒前
英俊的铭应助yao采纳,获得10
1秒前
净净子完成签到 ,获得积分10
2秒前
2秒前
Hancock完成签到 ,获得积分0
2秒前
魏猛完成签到,获得积分10
2秒前
帅气的皮卡完成签到 ,获得积分20
2秒前
3秒前
4秒前
夹谷蕈完成签到 ,获得积分10
5秒前
gecumk发布了新的文献求助10
6秒前
6秒前
嘟2928发布了新的文献求助20
6秒前
Astronaut完成签到,获得积分10
6秒前
6秒前
莎莎士比亚完成签到,获得积分10
8秒前
xiao xu完成签到 ,获得积分10
9秒前
9秒前
9秒前
linmo发布了新的文献求助10
9秒前
莹亮的星空完成签到,获得积分10
10秒前
明亮巨人完成签到 ,获得积分10
10秒前
WSGQT完成签到,获得积分10
10秒前
VirgoYn完成签到,获得积分10
10秒前
10秒前
向近完成签到 ,获得积分10
10秒前
平常幼菱完成签到,获得积分20
11秒前
犹豫大侠发布了新的文献求助10
11秒前
Yuanyuan发布了新的文献求助10
12秒前
12秒前
ilc发布了新的文献求助10
12秒前
玄学大哥完成签到,获得积分10
12秒前
13秒前
14秒前
眯眯眼的鞋垫完成签到,获得积分10
15秒前
吧KO发布了新的文献求助10
15秒前
weixiao发布了新的文献求助10
16秒前
英俊的铭应助单纯的柚子采纳,获得10
16秒前
Ancy应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037