TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪对对完成签到,获得积分10
刚刚
冯万里完成签到 ,获得积分10
刚刚
开心便当完成签到,获得积分10
刚刚
王kk完成签到 ,获得积分10
刚刚
迅速泽洋完成签到,获得积分10
刚刚
fjh发布了新的文献求助10
2秒前
2秒前
陈漂亮完成签到,获得积分10
2秒前
3秒前
4秒前
田様应助大大采纳,获得10
4秒前
4秒前
叶问发布了新的文献求助10
5秒前
5秒前
OnionJJ应助WYZ采纳,获得200
5秒前
斯文的道罡完成签到,获得积分10
5秒前
李健应助灿灿采纳,获得10
5秒前
隐形曼青应助开心便当采纳,获得10
6秒前
6秒前
6秒前
调研昵称发布了新的文献求助10
7秒前
7秒前
7秒前
今后应助牛马人生采纳,获得10
8秒前
Caroline完成签到,获得积分10
8秒前
edtaa完成签到 ,获得积分10
8秒前
雪霓裳发布了新的文献求助10
8秒前
高兴的鹤完成签到,获得积分10
8秒前
8秒前
卷王完成签到,获得积分10
9秒前
theshy关注了科研通微信公众号
10秒前
春风嬉蝉完成签到,获得积分10
10秒前
Lee完成签到,获得积分10
10秒前
CynthiaaaCat完成签到,获得积分10
10秒前
meimingzi完成签到,获得积分10
10秒前
田様应助Xue采纳,获得10
11秒前
粉色小妖精完成签到,获得积分10
11秒前
NexusExplorer应助YY采纳,获得10
11秒前
11秒前
无辜砖头应助尔玉采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760