TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 操作系统 组合数学
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
willen完成签到,获得积分10
1秒前
大个应助小皮艇采纳,获得10
1秒前
晒晒发布了新的文献求助10
1秒前
活着完成签到 ,获得积分10
2秒前
2秒前
李健的小迷弟应助帅玉玉采纳,获得10
2秒前
xxh完成签到,获得积分10
2秒前
3秒前
3秒前
平常丝发布了新的文献求助10
3秒前
vz7发布了新的文献求助10
4秒前
qbxiaojie完成签到,获得积分10
4秒前
思源应助勤恳万宝路采纳,获得10
4秒前
4秒前
4秒前
weiling发布了新的文献求助10
5秒前
今后应助icey采纳,获得10
5秒前
Onechch完成签到,获得积分10
5秒前
jingyu841123完成签到,获得积分10
5秒前
6秒前
6秒前
酷酷巧蟹发布了新的文献求助10
6秒前
LYF发布了新的文献求助10
6秒前
9秒前
双子土豆泥完成签到,获得积分10
9秒前
聪慧紫蓝发布了新的文献求助10
9秒前
ren完成签到,获得积分10
9秒前
nuo完成签到,获得积分20
9秒前
聪明眼睛发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
10秒前
李爱国应助小强采纳,获得10
10秒前
南四儿发布了新的文献求助10
10秒前
洋洋洋发布了新的文献求助10
10秒前
白漠雪发布了新的文献求助10
11秒前
dzhang198777发布了新的文献求助10
11秒前
kim发布了新的文献求助10
12秒前
充电宝应助ren采纳,获得10
12秒前
清秋完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095