已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥肠的枣糕啊完成签到,获得积分10
1秒前
小小发布了新的文献求助30
1秒前
2秒前
3秒前
4秒前
fedehe完成签到 ,获得积分10
4秒前
YifanWang应助潇潇雨歇采纳,获得10
6秒前
ZhouLin发布了新的文献求助10
6秒前
双眼皮跳蚤完成签到,获得积分0
9秒前
善学以致用应助Augustines采纳,获得10
16秒前
Mark完成签到 ,获得积分10
16秒前
ZhouLin完成签到,获得积分10
16秒前
hvu完成签到,获得积分10
17秒前
朴素海亦完成签到 ,获得积分10
21秒前
fsznc完成签到 ,获得积分0
22秒前
22秒前
为什么这篇文献又没有完成签到,获得积分10
25秒前
Lucas应助寰2023采纳,获得10
25秒前
william完成签到 ,获得积分10
27秒前
疯狂的娃哈哈完成签到 ,获得积分10
29秒前
儒雅完成签到 ,获得积分10
29秒前
土豪的摩托完成签到 ,获得积分10
31秒前
32秒前
AZN完成签到,获得积分10
32秒前
YifanWang应助潇潇雨歇采纳,获得10
33秒前
科研通AI6应助聪明怜阳采纳,获得10
34秒前
34秒前
辣椒完成签到 ,获得积分10
37秒前
38秒前
刘雨森完成签到 ,获得积分10
40秒前
43秒前
45秒前
Tian完成签到,获得积分10
46秒前
科研小新发布了新的文献求助10
49秒前
小巧亦竹完成签到,获得积分10
50秒前
科研通AI6应助Tian采纳,获得10
50秒前
54秒前
TL完成签到,获得积分10
55秒前
Rina完成签到,获得积分10
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576