TR-YOLO: A pig detection network based on YOLO V5n by combining self attention mechanism and large convolutional kernel

计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 过程(计算) 计算机视觉 数学 人工神经网络 组合数学 操作系统
作者
Shihua Pu,Zuohua Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 5263-5273
标识
DOI:10.3233/jifs-236674
摘要

Under the highly valued environment of intelligent breeding, rapid and accurate detection of pigs in the breeding process can scientifically monitor the health of pigs and improve the welfare level of pigs. At present, the methods of live pig detection cannot complete the detection task in real time and accurately, so a pig detection model named TR-YOLO is proposed. Using cameras to collect data at the pig breeding site in Rongchang District, Chongqing City, LabelImg software is used to mark the position of pigs in the image, and data augmentation methods are used to expand the data samples, thus constructing a pig dataset. The lightweight YOLOv5n is selected as the baseline detection model. In order to complete the pig detection task more accurately, a C3DW module constructed by depth wise separable convolution with large convolution kernels is used to replace the C3 module in YOLOv5n, which enhances the receptive field of the whole detection model; a C3TR module constructed by Transformer structure is used to extract more refined global feature information. Contrast with the baseline model YOLOv5n, the new detection model does not increase additional computational load, and improves the accuracy of detection by 1.6 percentage points. Compared with other lightweight detection models, the new detection model has corresponding advantages in terms of parameter quantity, computational load, detection accuracy and so on. It can detect pigs in feeding more accurately while satisfying the real-time performance of target detection, providing an effective method for live monitoring and analysis of pigs at the production site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共勉YOUNG完成签到,获得积分10
刚刚
Lucas应助cloud采纳,获得10
1秒前
zhw发布了新的文献求助10
1秒前
2秒前
观澜发布了新的文献求助10
4秒前
CipherSage应助感谢大家采纳,获得10
5秒前
Weilang发布了新的文献求助10
5秒前
hanhan发布了新的文献求助10
6秒前
6秒前
cheryjay发布了新的文献求助10
8秒前
dj发布了新的文献求助10
9秒前
9秒前
9秒前
zhw完成签到,获得积分10
10秒前
雨寒完成签到 ,获得积分10
10秒前
wshwx完成签到,获得积分10
11秒前
田乐天发布了新的文献求助10
14秒前
16秒前
zpy完成签到,获得积分10
16秒前
隐形曼青应助拉长的花生采纳,获得10
16秒前
核桃发布了新的文献求助10
17秒前
GGbond完成签到 ,获得积分10
18秒前
首席或雪月完成签到,获得积分10
19秒前
赘婿应助xxx采纳,获得10
19秒前
华仔应助水123采纳,获得10
21秒前
科研通AI6应助rr123456采纳,获得30
21秒前
一个西藏发布了新的文献求助10
23秒前
yyq617569158完成签到,获得积分10
23秒前
23秒前
fz应助观澜采纳,获得20
24秒前
27秒前
daigang发布了新的文献求助30
29秒前
lpydz完成签到,获得积分10
29秒前
专注的水壶完成签到 ,获得积分10
29秒前
30秒前
李可以完成签到 ,获得积分10
30秒前
姗珊发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
拉长的花生完成签到,获得积分20
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832