亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification

磁共振成像 人工智能 脑瘤 计算机科学 算法 模式识别(心理学) 放射科 医学 病理
作者
A. Vijaya Lakshmi,Manjunathan Alagarsamy,A. Anbarasa Pandian,Dinesh Paramathi Mani
出处
期刊:Electromagnetic Biology and Medicine [Informa]
卷期号:: 1-18
标识
DOI:10.1080/15368378.2024.2301952
摘要

Magnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma, pituitary and normal types. Numerous existing methods regarding brain tumor detection were suggested previously, but none of the methods accurately categorizes the brain tumor and consumes more computation period. To address these problems, an Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN. The simulation is activated in MATLAB. Finally, the EGNNN-VGG16-MPA-MRI-BTC method attains 38.98%, 46.74%, 23.27% higher accuracy, 24.24%, 37.82%, 13.92% higher precision, 26.94%, 47.04%, 38.94% higher sensitivity compared with the existing AlexNet-SVM-MRI-BTC, RESNET-SGD-MRI-BTC and MobileNet-V2-MRI-BTC models respectively.Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助llllly采纳,获得10
17秒前
25秒前
llllly完成签到,获得积分10
30秒前
31秒前
llllly发布了新的文献求助10
34秒前
凶狠的盛男完成签到 ,获得积分10
40秒前
50秒前
牛少辉发布了新的文献求助10
54秒前
Puan应助科研通管家采纳,获得10
56秒前
NNN7完成签到,获得积分10
1分钟前
烟花应助狄绮采纳,获得10
1分钟前
1分钟前
狄绮发布了新的文献求助10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qiu完成签到,获得积分10
1分钟前
CodeCraft应助土豆金采纳,获得10
1分钟前
bkagyin应助狄绮采纳,获得10
1分钟前
1分钟前
2分钟前
狄绮发布了新的文献求助10
2分钟前
狄绮完成签到,获得积分10
2分钟前
2分钟前
土豆金发布了新的文献求助10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
独特绿蓉发布了新的文献求助10
2分钟前
Jasper应助独特绿蓉采纳,获得10
2分钟前
2分钟前
2分钟前
Ava应助害怕的谷兰采纳,获得10
2分钟前
小情绪完成签到 ,获得积分10
2分钟前
清脆无颜发布了新的文献求助10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
清脆无颜完成签到,获得积分10
2分钟前
冷傲雨寒完成签到,获得积分10
3分钟前
cg完成签到 ,获得积分10
3分钟前
可爱的函函应助土豆金采纳,获得30
3分钟前
3分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939204
捐赠科研通 2483045
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627