亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modulation of Fe–MOF via second-transition metal ion doping (Ti, Mn, Zn, Cu) for efficient visible-light driven CO2 reduction to CH4

过渡金属 双金属片 光催化 兴奋剂 材料科学 微晶 金属 带隙 离子 可见光谱 无机化学 分析化学(期刊) 化学 催化作用 结晶学 光电子学 生物化学 有机化学 色谱法 冶金
作者
Yeyin Zhang,Ruting Huang,Yong Fang,Jiacheng Wang,Zijie Yuan,Xinwei Chen,Wenjie Zhu,Yuan Cai,Xianyang Shi
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:336: 126164-126164 被引量:14
标识
DOI:10.1016/j.seppur.2023.126164
摘要

This study developed metal–organic frameworks (MOFs) with enhanced properties for CO2 conversion by doping second- transition metal ions (Ti, Mn, Zn, and Cu) into Fe–MOF, which resulted in Fe-M−MOF (M = Ti, Mn, Zn, or Cu). The selection of different metal species in the metal cluster nodes of the MOFs significantly impacted the CO2 conversion efficiency. Among the different combinations, the Fe–Cu bimetallic cluster node was identified as the most optimal node. In addition, we investigated various variables and preparation conditions for determining the optimal synthesis conditions for Fe–Cu-MOFs. We observed that a synthesis temperature, time, and pH of 130 °C, 15 h, and 3.2, respectively, yielded the best results. The 13CO2 isotope labeling method confirmed that the carbon source of CO and CH4 were derived from CO2. Under simulated visible-light irradiation (λ ≥ 420 nm), Fe–Cu-T130 exhibited the highest photocatalytic activity, with a CH4 generation rate of up to 444.2 μmol g−1 h−1. This high activity was attributed to several factors. First, the presence of Fe2+, Fe3+, and Cu2+ on the surface of Fe–Cu-T130 resulted in photogenerated electrons and holes under visible-light excitation. Fe2+ accepted electrons to reduce CO2, whereas Fe3+ and Cu2+ oxidized H2O through holes. Second, the polycrystalline structure of Fe–Cu-T130 with abundant surface oxygen vacancies enhanced the chemical reactivity. Finally, the low conduction band position and narrower bandgap of Fe–Cu-T130 facilitated the excitation of electrons into the conduction band, thereby promoting the CO2 reduction reaction. This study successfully demonstrated the enhanced photocatalytic activity of Fe–Cu-T130 for CO2 conversion under visible light. The findings provide insight into the development of MOFs with improved properties for the sustainable and efficient utilization of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜蔡儿发布了新的文献求助10
1秒前
Criminology34应助ACE采纳,获得10
3秒前
独特的鹅完成签到,获得积分10
3秒前
morena发布了新的文献求助30
4秒前
6秒前
Yuan完成签到 ,获得积分10
8秒前
10秒前
大个应助LALA采纳,获得10
11秒前
香蕉觅云应助七宝大当家采纳,获得10
17秒前
Akim应助撕佳采纳,获得10
20秒前
残酷无情猫猫头完成签到,获得积分10
22秒前
肥鲸鱼完成签到,获得积分10
22秒前
23秒前
无尘完成签到 ,获得积分10
25秒前
29秒前
海鸥别叫了完成签到 ,获得积分10
31秒前
菜菜蔡儿完成签到 ,获得积分10
33秒前
撕佳发布了新的文献求助10
33秒前
34秒前
LALA发布了新的文献求助10
40秒前
40秒前
小y要读书完成签到,获得积分10
42秒前
BowieHuang应助科研通管家采纳,获得10
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
Tanya47应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
43秒前
长情谷南发布了新的文献求助10
44秒前
Criminology34举报Einsamerxx求助涉嫌违规
44秒前
48秒前
潇淼完成签到 ,获得积分10
50秒前
习惯过了头完成签到 ,获得积分10
51秒前
简柠完成签到,获得积分10
51秒前
fangdonghai发布了新的文献求助10
52秒前
Sc完成签到 ,获得积分10
56秒前
wwdd完成签到,获得积分10
56秒前
Hello应助嘎哈采纳,获得10
57秒前
缥缈夏彤完成签到,获得积分10
1分钟前
烂漫凡双发布了新的文献求助30
1分钟前
Dliii完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881