Semantic Consistency Reasoning for 3-D Object Detection in Point Clouds

点云 计算机科学 目标检测 人工智能 推论 一致性(知识库) 分割 水准点(测量) 对象(语法) 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 大地测量学 地理
作者
Wenwen Wei,Ping Wei,Zhimin Liao,Jialu Qin,Xiang Cheng,Meiqin Liu,Nanning Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3341097
摘要

Point cloud-based 3-D object detection is a significant and critical issue in numerous applications. While most existing methods attempt to capitalize on the geometric characteristics of point clouds, they neglect the internal semantic properties of point and the consistency between the semantic and geometric clues. We introduce a semantic consistency (SC) mechanism for 3-D object detection in this article, by reasoning about the semantic relations between 3-D object boxes and its internal points. This mechanism is based on a natural principle: the semantic category of a 3-D bounding box should be consistent with the categories of all points within the box. Driven by the SC mechanism, we propose a novel SC network (SCNet) to detect 3-D objects from point clouds. Specifically, the SCNet is composed of a feature extraction module, a detection decision module, and a semantic segmentation module. In inference, the feature extraction and the detection decision modules are used to detect 3-D objects. In training, the semantic segmentation module is jointly trained with the other two modules to produce more robust and applicable model parameters. The performance is greatly boosted through reasoning about the relations between the output 3-D object boxes and segmented points. The proposed SC mechanism is model-agnostic and can be integrated into other base 3-D object detection models. We test the proposed model on three challenging indoor and outdoor benchmark datasets: ScanNetV2, SUN RGB-D, and KITTI. Furthermore, to validate the universality of the SC mechanism, we implement it in three different 3-D object detectors. The experiments show that the performance is impressively improved and the extensive ablation studies also demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向秋灵完成签到,获得积分10
刚刚
Mo完成签到,获得积分10
刚刚
陌陌完成签到,获得积分10
刚刚
Mandarine完成签到,获得积分10
刚刚
刚刚
大模型应助Patty采纳,获得10
刚刚
hahaha完成签到,获得积分10
2秒前
平凡中的限量版完成签到,获得积分10
2秒前
2秒前
半农应助梨花月采纳,获得10
2秒前
温柔的代曼完成签到,获得积分10
2秒前
雨点发布了新的文献求助10
2秒前
Hilda007应助刚睡醒采纳,获得10
3秒前
自觉梦菲完成签到,获得积分10
4秒前
AI完成签到,获得积分10
4秒前
务实的胡萝卜完成签到,获得积分10
4秒前
4秒前
吕万鹏发布了新的文献求助10
4秒前
LvYaJie完成签到,获得积分20
5秒前
22nd发布了新的文献求助10
5秒前
苏silence发布了新的文献求助10
6秒前
搜集达人应助沙青亦采纳,获得10
6秒前
iron完成签到,获得积分10
6秒前
儒雅的豁完成签到,获得积分10
6秒前
小二郎应助寂灭之时采纳,获得10
6秒前
所所应助发发发采纳,获得30
6秒前
6秒前
量子星尘发布了新的文献求助20
7秒前
重楼远志发布了新的文献求助100
7秒前
7秒前
7秒前
辛勤月饼完成签到,获得积分10
8秒前
8秒前
zzz关注了科研通微信公众号
8秒前
9秒前
我是老大应助Chichi采纳,获得10
9秒前
肖坤发布了新的文献求助10
9秒前
情怀应助称心寒松采纳,获得10
10秒前
杨杨完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006