亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic Consistency Reasoning for 3-D Object Detection in Point Clouds

点云 计算机科学 目标检测 人工智能 推论 一致性(知识库) 分割 水准点(测量) 对象(语法) 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 大地测量学 地理
作者
Wenwen Wei,Ping Wei,Zhimin Liao,Jialu Qin,Xiang Cheng,Meiqin Liu,Nanning Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3341097
摘要

Point cloud-based 3-D object detection is a significant and critical issue in numerous applications. While most existing methods attempt to capitalize on the geometric characteristics of point clouds, they neglect the internal semantic properties of point and the consistency between the semantic and geometric clues. We introduce a semantic consistency (SC) mechanism for 3-D object detection in this article, by reasoning about the semantic relations between 3-D object boxes and its internal points. This mechanism is based on a natural principle: the semantic category of a 3-D bounding box should be consistent with the categories of all points within the box. Driven by the SC mechanism, we propose a novel SC network (SCNet) to detect 3-D objects from point clouds. Specifically, the SCNet is composed of a feature extraction module, a detection decision module, and a semantic segmentation module. In inference, the feature extraction and the detection decision modules are used to detect 3-D objects. In training, the semantic segmentation module is jointly trained with the other two modules to produce more robust and applicable model parameters. The performance is greatly boosted through reasoning about the relations between the output 3-D object boxes and segmented points. The proposed SC mechanism is model-agnostic and can be integrated into other base 3-D object detection models. We test the proposed model on three challenging indoor and outdoor benchmark datasets: ScanNetV2, SUN RGB-D, and KITTI. Furthermore, to validate the universality of the SC mechanism, we implement it in three different 3-D object detectors. The experiments show that the performance is impressively improved and the extensive ablation studies also demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘鑫发布了新的文献求助10
1秒前
9秒前
隐形曼青应助孤独小笼包采纳,获得10
12秒前
楚楚完成签到 ,获得积分10
12秒前
慌慌完成签到 ,获得积分10
14秒前
潘鑫完成签到,获得积分20
19秒前
领导范儿应助LLY采纳,获得10
20秒前
27秒前
我滴天又下雨完成签到 ,获得积分10
28秒前
JamesPei应助魔幻冷风采纳,获得10
28秒前
33秒前
HHHHH完成签到,获得积分10
33秒前
38秒前
夏xx完成签到 ,获得积分10
40秒前
小灰灰应助痴痴的噜采纳,获得10
40秒前
44秒前
44秒前
可乐完成签到,获得积分20
44秒前
英姑应助孤独小笼包采纳,获得10
46秒前
Cu发布了新的文献求助10
47秒前
53秒前
孤独小笼包完成签到,获得积分10
57秒前
阳光冰颜完成签到,获得积分10
58秒前
小马甲应助徐志豪采纳,获得10
58秒前
??发布了新的文献求助30
59秒前
可爱邓邓完成签到 ,获得积分10
59秒前
大盆发布了新的文献求助10
1分钟前
Miracle完成签到,获得积分10
1分钟前
烂漫伊完成签到,获得积分10
1分钟前
称心曼安应助徐zhipei采纳,获得10
1分钟前
1分钟前
大盆完成签到,获得积分10
1分钟前
魔幻冷风发布了新的文献求助10
1分钟前
1分钟前
Hello应助小黑子采纳,获得10
1分钟前
1分钟前
痴痴的噜完成签到,获得积分10
1分钟前
1分钟前
纯真玉兰发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418184
求助须知:如何正确求助?哪些是违规求助? 4533895
关于积分的说明 14142806
捐赠科研通 4450174
什么是DOI,文献DOI怎么找? 2441118
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079