Semantic Consistency Reasoning for 3-D Object Detection in Point Clouds

点云 计算机科学 目标检测 人工智能 推论 一致性(知识库) 分割 水准点(测量) 对象(语法) 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 大地测量学 地理
作者
Wenwen Wei,Ping Wei,Zhimin Liao,Jialu Qin,Xiang Cheng,Meiqin Liu,Nanning Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3341097
摘要

Point cloud-based 3-D object detection is a significant and critical issue in numerous applications. While most existing methods attempt to capitalize on the geometric characteristics of point clouds, they neglect the internal semantic properties of point and the consistency between the semantic and geometric clues. We introduce a semantic consistency (SC) mechanism for 3-D object detection in this article, by reasoning about the semantic relations between 3-D object boxes and its internal points. This mechanism is based on a natural principle: the semantic category of a 3-D bounding box should be consistent with the categories of all points within the box. Driven by the SC mechanism, we propose a novel SC network (SCNet) to detect 3-D objects from point clouds. Specifically, the SCNet is composed of a feature extraction module, a detection decision module, and a semantic segmentation module. In inference, the feature extraction and the detection decision modules are used to detect 3-D objects. In training, the semantic segmentation module is jointly trained with the other two modules to produce more robust and applicable model parameters. The performance is greatly boosted through reasoning about the relations between the output 3-D object boxes and segmented points. The proposed SC mechanism is model-agnostic and can be integrated into other base 3-D object detection models. We test the proposed model on three challenging indoor and outdoor benchmark datasets: ScanNetV2, SUN RGB-D, and KITTI. Furthermore, to validate the universality of the SC mechanism, we implement it in three different 3-D object detectors. The experiments show that the performance is impressively improved and the extensive ablation studies also demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助舞星辰采纳,获得10
1秒前
Singularity应助Santiago采纳,获得10
1秒前
Keily完成签到,获得积分10
1秒前
温悦发布了新的文献求助30
1秒前
satohoang发布了新的文献求助10
2秒前
调皮的西装完成签到,获得积分10
2秒前
干净热狗发布了新的文献求助20
2秒前
4秒前
5秒前
5秒前
荏苒发布了新的文献求助20
5秒前
杰老爷完成签到,获得积分10
6秒前
棋士发布了新的文献求助10
7秒前
Rena完成签到,获得积分10
7秒前
8秒前
8秒前
Sheng完成签到,获得积分10
8秒前
韩soso发布了新的文献求助10
8秒前
米糊发布了新的文献求助10
8秒前
xx驳回了Akim应助
8秒前
共享精神应助土亢土亢土采纳,获得10
9秒前
9秒前
Blue关注了科研通微信公众号
10秒前
10秒前
SYLH应助Foremelon采纳,获得10
11秒前
12秒前
Lily发布了新的文献求助10
13秒前
cc发布了新的文献求助10
13秒前
张姣姣发布了新的文献求助10
13秒前
13秒前
852发布了新的文献求助10
13秒前
13秒前
13秒前
kopp发布了新的文献求助10
13秒前
想喝奶茶发布了新的文献求助10
15秒前
15秒前
m123关注了科研通微信公众号
15秒前
15秒前
申申发布了新的文献求助10
16秒前
Zengyuan完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163