Semantic Consistency Reasoning for 3-D Object Detection in Point Clouds

点云 计算机科学 目标检测 人工智能 推论 一致性(知识库) 分割 水准点(测量) 对象(语法) 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 大地测量学 地理
作者
Wenwen Wei,Ping Wei,Zhimin Liao,Jialu Qin,Xiang Cheng,Meiqin Liu,Nanning Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3341097
摘要

Point cloud-based 3-D object detection is a significant and critical issue in numerous applications. While most existing methods attempt to capitalize on the geometric characteristics of point clouds, they neglect the internal semantic properties of point and the consistency between the semantic and geometric clues. We introduce a semantic consistency (SC) mechanism for 3-D object detection in this article, by reasoning about the semantic relations between 3-D object boxes and its internal points. This mechanism is based on a natural principle: the semantic category of a 3-D bounding box should be consistent with the categories of all points within the box. Driven by the SC mechanism, we propose a novel SC network (SCNet) to detect 3-D objects from point clouds. Specifically, the SCNet is composed of a feature extraction module, a detection decision module, and a semantic segmentation module. In inference, the feature extraction and the detection decision modules are used to detect 3-D objects. In training, the semantic segmentation module is jointly trained with the other two modules to produce more robust and applicable model parameters. The performance is greatly boosted through reasoning about the relations between the output 3-D object boxes and segmented points. The proposed SC mechanism is model-agnostic and can be integrated into other base 3-D object detection models. We test the proposed model on three challenging indoor and outdoor benchmark datasets: ScanNetV2, SUN RGB-D, and KITTI. Furthermore, to validate the universality of the SC mechanism, we implement it in three different 3-D object detectors. The experiments show that the performance is impressively improved and the extensive ablation studies also demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
JYX完成签到 ,获得积分10
2秒前
Rui发布了新的文献求助10
2秒前
2秒前
科研通AI6应助HH采纳,获得10
2秒前
鳗鱼豆芽完成签到,获得积分10
2秒前
Ed23发布了新的文献求助10
3秒前
3秒前
3秒前
lcyss发布了新的文献求助10
3秒前
烟花应助哭泣的涵柳采纳,获得10
3秒前
3秒前
金水完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
慧的茶发布了新的文献求助30
5秒前
李健的小迷弟应助崔昕雨采纳,获得10
5秒前
朱艺文发布了新的文献求助10
5秒前
机灵飞珍发布了新的文献求助10
5秒前
科研通AI5应助随心采纳,获得10
5秒前
5秒前
Orange应助伊森采纳,获得10
5秒前
今后应助lucky采纳,获得10
5秒前
今后应助Ding采纳,获得10
5秒前
123有熊猫完成签到,获得积分10
6秒前
6秒前
6秒前
嘎嘎完成签到,获得积分10
6秒前
木蒙蒙完成签到,获得积分10
6秒前
碳酸氢钠完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助50
6秒前
蓝莓芝士发布了新的文献求助10
7秒前
傅宣发布了新的文献求助10
7秒前
8秒前
8秒前
lmt完成签到,获得积分10
8秒前
yy完成签到,获得积分10
8秒前
顾矜应助柚子采纳,获得10
8秒前
Lun伦完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475