Semantic Consistency Reasoning for 3-D Object Detection in Point Clouds

点云 计算机科学 目标检测 人工智能 推论 一致性(知识库) 分割 水准点(测量) 对象(语法) 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 大地测量学 地理
作者
Wenwen Wei,Ping Wei,Zhimin Liao,Jialu Qin,Xiang Cheng,Meiqin Liu,Nanning Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tnnls.2023.3341097
摘要

Point cloud-based 3-D object detection is a significant and critical issue in numerous applications. While most existing methods attempt to capitalize on the geometric characteristics of point clouds, they neglect the internal semantic properties of point and the consistency between the semantic and geometric clues. We introduce a semantic consistency (SC) mechanism for 3-D object detection in this article, by reasoning about the semantic relations between 3-D object boxes and its internal points. This mechanism is based on a natural principle: the semantic category of a 3-D bounding box should be consistent with the categories of all points within the box. Driven by the SC mechanism, we propose a novel SC network (SCNet) to detect 3-D objects from point clouds. Specifically, the SCNet is composed of a feature extraction module, a detection decision module, and a semantic segmentation module. In inference, the feature extraction and the detection decision modules are used to detect 3-D objects. In training, the semantic segmentation module is jointly trained with the other two modules to produce more robust and applicable model parameters. The performance is greatly boosted through reasoning about the relations between the output 3-D object boxes and segmented points. The proposed SC mechanism is model-agnostic and can be integrated into other base 3-D object detection models. We test the proposed model on three challenging indoor and outdoor benchmark datasets: ScanNetV2, SUN RGB-D, and KITTI. Furthermore, to validate the universality of the SC mechanism, we implement it in three different 3-D object detectors. The experiments show that the performance is impressively improved and the extensive ablation studies also demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇凝旋完成签到,获得积分10
刚刚
HopeStar发布了新的文献求助10
刚刚
刚刚
石幻枫完成签到 ,获得积分10
1秒前
生动盼秋发布了新的文献求助10
1秒前
韭黄发布了新的文献求助10
1秒前
Eliauk完成签到,获得积分10
2秒前
小野狼完成签到,获得积分10
2秒前
威武诺言完成签到,获得积分10
2秒前
fengye发布了新的文献求助10
2秒前
李东东完成签到 ,获得积分10
2秒前
Zn应助hulin_zjxu采纳,获得10
2秒前
海鸥海鸥发布了新的文献求助50
3秒前
小乔要努力变强完成签到,获得积分10
3秒前
YANG完成签到 ,获得积分10
3秒前
3秒前
在水一方应助马保国123采纳,获得10
3秒前
Jovid完成签到,获得积分10
4秒前
建成完成签到,获得积分10
4秒前
爆米花应助落落采纳,获得10
4秒前
852应助liu123479采纳,获得20
5秒前
5秒前
无情念之发布了新的文献求助10
5秒前
lilac应助Rocky采纳,获得10
5秒前
5秒前
深情安青应助OYE采纳,获得10
6秒前
6秒前
李爱国应助热情的阿猫桑采纳,获得10
6秒前
6秒前
6秒前
花花完成签到,获得积分10
7秒前
无花果应助韭黄采纳,获得10
7秒前
啦某某发布了新的文献求助20
8秒前
cc发布了新的文献求助30
8秒前
10秒前
一颗苹果完成签到,获得积分10
10秒前
故意的傲玉应助小月采纳,获得10
11秒前
nicemice发布了新的文献求助10
11秒前
xtlx完成签到,获得积分10
11秒前
蓝桉完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759