清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AFPM: A Low-Cost and Universal Adversarial Defense for Speaker Recognition Systems

计算机科学 对抗制 稳健性(进化) 灵活性(工程) 生物识别 遮罩(插图) 过程(计算) 特征提取 模式识别(心理学) 人工智能 数学 艺术 生物化学 化学 统计 视觉艺术 基因 操作系统
作者
Zongkun Sun,Yanzhen Ren,Yihuan Huang,Wuyang Liu,H.-L. Zhu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2023.3348232
摘要

Speaker recognition systems (SRSs) are commonly used for biometric identification. However, these systems are vulnerable to adversarial attacks. Several defenses have been proposed but they require high costs in terms of additional data and computational resources to ensure robustness. To address these issues, this paper proposes a low-cost input reconstruction defense method called adaptive F-ratio-based partial masking (AFPM), which utilizes a robust feature extraction process to guarantee high defensibility. The underlying distribution of non-robust features is explored and filtered out by partial masking (PM), which helps maintain a low defense construction cost. An F-ratio-based PM (FPM) defense strategy is proposed by integrating the F-ratio, which reflects the weight of each frequency band for distinguishing between speakers, to balance classification accuracy and defensiveness. AFPM, which introduces an adaptive threshold calculation algorithm to FPM, is proposed to achieve further improved defensiveness and flexibility. Comparative experimental results show that AFPM is low-cost, highly defensive and universal. The construction process of AFPM does not involve training and its implementation does not require the protected SRSs to be retrained, only fine-tuned. While maintaining the classification accuracy at 99.42%, the average defense capability of AFPM against five white-box adaptive attacks is 90.89%, which is 9.23% better than that of the low-cost input reconstruction defense method and 3.77% better than that of the high-cost Parallel WaveGAN (PWG) defense approach. Against grey- and black-box adaptive attacks, FAKEBOB and Kenansville, AFPM reaches maximum defense effects of 96.01% and 74.49%, respectively, surpassing PWG by 4.5% and 65.82%. Furthermore, AFPM is universal and capable of protecting various SRSs against different attack strengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miss完成签到,获得积分10
10秒前
沈呆呆发布了新的文献求助10
10秒前
晴莹完成签到 ,获得积分10
18秒前
饱满的棒棒糖完成签到 ,获得积分10
19秒前
23秒前
时尚丹寒完成签到 ,获得积分10
25秒前
紫熊发布了新的文献求助10
45秒前
科研通AI5应助甜甜的紫菜采纳,获得10
57秒前
紫熊完成签到,获得积分10
1分钟前
1分钟前
稻子完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
十一苗完成签到 ,获得积分10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
2分钟前
完美世界应助甜甜的紫菜采纳,获得10
2分钟前
果冻橙完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
JG完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助50
5分钟前
方白秋完成签到,获得积分10
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
烟花应助科研通管家采纳,获得10
6分钟前
温柔的柠檬完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
ric发布了新的文献求助10
6分钟前
脑洞疼应助ceeray23采纳,获得20
6分钟前
7分钟前
7分钟前
8分钟前
8分钟前
ceeray23发布了新的文献求助20
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612389
求助须知:如何正确求助?哪些是违规求助? 4017632
关于积分的说明 12436538
捐赠科研通 3699747
什么是DOI,文献DOI怎么找? 2040303
邀请新用户注册赠送积分活动 1073123
科研通“疑难数据库(出版商)”最低求助积分说明 956841