AFPM: A Low-Cost and Universal Adversarial Defense for Speaker Recognition Systems

计算机科学 对抗制 稳健性(进化) 灵活性(工程) 生物识别 遮罩(插图) 过程(计算) 特征提取 模式识别(心理学) 人工智能 数学 生物化学 基因 统计 操作系统 艺术 视觉艺术 化学
作者
Zongkun Sun,Yanzhen Ren,Yihuan Huang,Wuyang Liu,H.-L. Zhu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2023.3348232
摘要

Speaker recognition systems (SRSs) are commonly used for biometric identification. However, these systems are vulnerable to adversarial attacks. Several defenses have been proposed but they require high costs in terms of additional data and computational resources to ensure robustness. To address these issues, this paper proposes a low-cost input reconstruction defense method called adaptive F-ratio-based partial masking (AFPM), which utilizes a robust feature extraction process to guarantee high defensibility. The underlying distribution of non-robust features is explored and filtered out by partial masking (PM), which helps maintain a low defense construction cost. An F-ratio-based PM (FPM) defense strategy is proposed by integrating the F-ratio, which reflects the weight of each frequency band for distinguishing between speakers, to balance classification accuracy and defensiveness. AFPM, which introduces an adaptive threshold calculation algorithm to FPM, is proposed to achieve further improved defensiveness and flexibility. Comparative experimental results show that AFPM is low-cost, highly defensive and universal. The construction process of AFPM does not involve training and its implementation does not require the protected SRSs to be retrained, only fine-tuned. While maintaining the classification accuracy at 99.42%, the average defense capability of AFPM against five white-box adaptive attacks is 90.89%, which is 9.23% better than that of the low-cost input reconstruction defense method and 3.77% better than that of the high-cost Parallel WaveGAN (PWG) defense approach. Against grey- and black-box adaptive attacks, FAKEBOB and Kenansville, AFPM reaches maximum defense effects of 96.01% and 74.49%, respectively, surpassing PWG by 4.5% and 65.82%. Furthermore, AFPM is universal and capable of protecting various SRSs against different attack strengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1234完成签到,获得积分10
1秒前
上官若男应助wangsiyuan采纳,获得10
1秒前
小小完成签到,获得积分10
1秒前
zxy完成签到,获得积分10
1秒前
复杂的访波完成签到,获得积分10
1秒前
agsbiqwgudo发布了新的文献求助50
1秒前
2秒前
2秒前
落竹完成签到 ,获得积分10
3秒前
凌代萱发布了新的文献求助10
3秒前
Owen应助小陈采纳,获得10
3秒前
Theone发布了新的文献求助10
3秒前
科研小白发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
雪白山蝶完成签到,获得积分10
6秒前
静俏完成签到,获得积分10
6秒前
小蘑菇应助kaka091采纳,获得10
6秒前
Milton_z发布了新的文献求助10
6秒前
Michael发布了新的文献求助10
7秒前
8秒前
cnd完成签到 ,获得积分20
8秒前
琪3043发布了新的文献求助10
8秒前
吃猫的鱼完成签到,获得积分10
8秒前
CodeCraft应助小练采纳,获得10
8秒前
飞起科研发布了新的文献求助20
8秒前
mty完成签到,获得积分10
9秒前
9秒前
小米完成签到,获得积分20
9秒前
9秒前
10秒前
勤恳冬萱关注了科研通微信公众号
10秒前
英勇的战斗机完成签到,获得积分10
11秒前
xiuxiuxiuxiu发布了新的文献求助10
11秒前
情怀应助静俏采纳,获得10
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587