EduLGCL: Local-global contrastive learning model for education recommendation

概化理论 计算机科学 图形 人工智能 机器学习 特征学习 情报检索 自然语言处理 理论计算机科学 数学 统计
作者
Yijun Zhao,Fajian Jiang,Yin Pang,Yunxi Deng,Youyou Han,Jinfeng Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111357-111357
标识
DOI:10.1016/j.knosys.2023.111357
摘要

Contrastive learning has been used in recommendations to learn user and item representations from sparse and long-tail user-item interaction histories. Recommendations applied in education have several key challenges. Firstly, the frequency of student-course interactions is lower, resulting in limited data. Secondly, existing models rely on multimodal data for multi-objective recommendations and they limit the model’s generalizability. Lastly, it is important to consider the impact of static features on different students. Aiming at addressing these challenges, a novel course recommendation system based on Local-Global Contrastive Learning called as EduLGCL is proposed, in which the mutual information between course features and student features is computed to select course features. After expanding the connections, the relationship between students and courses is described from different perspectives. Multiple graph convolutional operations are performed on the interaction history graph which can connect students and courses and represent student clusters. Through the feature extraction layer, the final student representation is obtained. Extensive experiments were conducted on three public datasets and a course dataset collected from a real-world environment to validate the performance of the EduLGCL. The results demonstrate that EduLGCL outperforms baseline methods, particularly in handling user cold-start problems. Our code is available at https://github.com/mintZYJ/EduLGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSYang完成签到,获得积分10
1秒前
sun完成签到,获得积分10
1秒前
丘比特应助如初采纳,获得10
2秒前
牛了个牛完成签到,获得积分10
2秒前
沉默听芹完成签到,获得积分10
3秒前
4秒前
sunflower完成签到,获得积分0
4秒前
犹豫的初丹完成签到,获得积分10
4秒前
zgx完成签到,获得积分10
4秒前
科研通AI5应助法码采纳,获得10
4秒前
能干的烧鹅完成签到,获得积分10
4秒前
热心路人应助djsj采纳,获得500
5秒前
wen_dai完成签到,获得积分10
5秒前
青菜完成签到,获得积分10
5秒前
我超爱cs完成签到,获得积分10
6秒前
6秒前
gg完成签到,获得积分10
6秒前
如意的新梅完成签到,获得积分10
6秒前
春樹暮雲完成签到 ,获得积分10
6秒前
个性凡儿完成签到,获得积分10
7秒前
心心完成签到,获得积分10
7秒前
乐观的香氛完成签到 ,获得积分10
8秒前
何世通完成签到 ,获得积分10
9秒前
ding应助如初采纳,获得10
9秒前
ly发布了新的文献求助10
9秒前
9秒前
小西完成签到 ,获得积分10
9秒前
顺利的若灵完成签到,获得积分10
9秒前
小棉背心完成签到 ,获得积分10
9秒前
阿九发布了新的文献求助10
10秒前
嘻嘻完成签到 ,获得积分10
10秒前
淘宝叮咚完成签到,获得积分10
10秒前
SYLH应助网安小趴菜采纳,获得20
10秒前
地学韦丰吉司长完成签到,获得积分10
11秒前
易槐完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
胖豆完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910