An in-situ bicomponent polymeric matrix solid electrolyte for solid-state Lithium metal batteries with extended cycling-life

电解质 材料科学 化学工程 离子电导率 电池(电) 锂(药物) 陶瓷 锂电池 聚合物 阴极 快离子导体 原位聚合 电极 离子 离子键合 聚合 复合材料 化学 物理化学 有机化学 热力学 医学 功率(物理) 物理 生物化学 工程类 内分泌学
作者
Qixin Gai,Tianyu Zhao,Junwei Ma,Chuangsheng Wang,Hongtao Gao,Li Li
出处
期刊:Journal of energy storage [Elsevier]
卷期号:80: 110150-110150 被引量:4
标识
DOI:10.1016/j.est.2023.110150
摘要

The utilization of ceramic-polymer hybrid electrolytes has gained popularity in the development of all-solid-state lithium batteries that are capable of high-energy and long-lasting performance. This research presents a novel dual hybrid in-situ solid electrolyte membrane (iHSE) that is tailored for high-performance Li-ion batteries, consisting of LATP and PVDF-HFP. The hybrid membrane is comprised of LATP particles and PVDF-HFP with PEG polymer matrix (HSE), and the migration of Li+ ions in LATP particles was simulated through molecular dynamics. At a temperature of 40 °C, the hybrid membrane demonstrates an ionic conductivity of 7.36 × 10−4 S·cm−1 and a lithium-ion migration number of 0.61. The interface between the cathode and electrolyte membrane is effectively enhanced through in situ polymerization with the resulting all-solid-state lithium battery exhibits a reversible discharge capacity of 160 mAh·g−1 at a current density of 0.1C multiplier at ambient temperature and can function normally for over 1000 cycles of charge and discharge at 1C multiplier. Moreover, the discharge capacity trend exhibits greater uniformity in comparison to a battery lacking interface enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
Hungrylunch应助科研通管家采纳,获得20
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Tong完成签到,获得积分0
1秒前
Cassie应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
撒啊完成签到,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小王不会看文献完成签到,获得积分10
3秒前
3秒前
2以李完成签到,获得积分10
3秒前
4秒前
4秒前
倩倩完成签到 ,获得积分10
5秒前
5秒前
贝利亚完成签到,获得积分10
5秒前
5秒前
csdv发布了新的文献求助10
5秒前
坚强乌龟完成签到,获得积分10
5秒前
澎鱼盐完成签到,获得积分10
6秒前
6秒前
平淡小丸子完成签到 ,获得积分10
6秒前
吃花生酱的猫完成签到,获得积分10
6秒前
7秒前
Vesper完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672