Quantitative ultrasound parameters from scattering and propagation may reduce the biopsy rate for breast tumor

乳腺癌 活检 超声波 放射科 计算机科学 乳腺超声检查 金标准(测试) 医学 乳腺肿瘤 模式识别(心理学) 癌症 人工智能 乳腺摄影术 内科学
作者
Jiaqi Han,Pengfei Sun,Qizhen Sun,Zhun Xie,Lijun Xu,Xiangdong Hu,Jianguo Ma
出处
期刊:Ultrasonics [Elsevier]
卷期号:138: 107233-107233
标识
DOI:10.1016/j.ultras.2023.107233
摘要

Breast cancer has become the most common cancer worldwide, and early screening improves the patient's survival rate significantly. Although pathology with needle-based biopsy is the gold standard for breast cancer diagnosis, it is invasive, painful, and expensive. Meanwhile it makes patients suffer from misplacement of the needle, resulting in misdiagnosis and further assessment. Ultrasound imaging is non-invasive and real-time, however, benign and malignant tumors are hard to differentiate in grayscale B-mode images. We hypothesis that breast tumors exhibit characteristic properties, which generates distinctive spectral patterns not only in scattering, but also during propagation. In this paper, we propose a breast tumor classification method that evaluates the spectral pattern of the tissues both inside the tumor and beneath it. First, quantitative ultrasonic parameters of these spectral patterns were calculated as the representation of the corresponding tissues. Second, parameters were classified by the K-Nearest Neighbor machine learning model. This method was verified with an open access dataset as a reference, and applied to our own dataset to evaluate the potential for tumors assessment. With both datasets, the proposed method demonstrates accurate classification of the tumors, which potentially makes it unnecessary for certain patients to take the biopsy, reducing the rate of the painful and expensive procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力浩轩发布了新的文献求助10
1秒前
Owen应助沧海采纳,获得10
1秒前
敏感初露发布了新的文献求助10
2秒前
共享精神应助amll采纳,获得10
2秒前
2秒前
洁净的从安完成签到,获得积分10
2秒前
2秒前
wzf完成签到,获得积分10
3秒前
Lucas应助雨琴采纳,获得10
3秒前
顾矜应助雨琴采纳,获得10
3秒前
3秒前
3秒前
今后应助雨琴采纳,获得10
3秒前
汉堡包应助我是鸡汤采纳,获得10
4秒前
酷波er应助再见了星空采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
FashionBoy应助敏感初露采纳,获得10
6秒前
JamesPei应助KK采纳,获得10
6秒前
清爽灰狼发布了新的文献求助10
6秒前
科研通AI2S应助二两采纳,获得10
6秒前
7秒前
8秒前
芝士球球应助jianglu采纳,获得20
8秒前
阔达初南发布了新的文献求助10
8秒前
灭亡发布了新的文献求助10
8秒前
ZHDNCG发布了新的文献求助10
10秒前
在水一方应助热心的诗蕊采纳,获得10
11秒前
楠楠完成签到,获得积分20
11秒前
11秒前
阿玖完成签到 ,获得积分10
12秒前
rururu发布了新的文献求助10
12秒前
领导范儿应助dyy采纳,获得10
13秒前
赘婿应助王雨晴采纳,获得10
13秒前
CipherSage应助Iamrobot采纳,获得10
13秒前
14秒前
amll发布了新的文献求助10
14秒前
DaLu完成签到,获得积分10
15秒前
15秒前
小新完成签到 ,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176493
求助须知:如何正确求助?哪些是违规求助? 2827608
关于积分的说明 7962971
捐赠科研通 2488495
什么是DOI,文献DOI怎么找? 1326494
科研通“疑难数据库(出版商)”最低求助积分说明 634994
版权声明 602837