免疫印迹
磷酸化
免疫染色
信号转导
ERBB3型
再生(生物学)
纤维化
血管生成
细胞生物学
医学
癌症研究
生物
药理学
免疫组织化学
内科学
生物化学
受体酪氨酸激酶
基因
作者
Xuemei Wang,Hao Wu,Luxun Tang,Wenbin Fu,Yanji He,Chunyu Zeng,Wei Eric Wang
标识
DOI:10.1016/j.yjmcc.2023.12.006
摘要
Abstract
Stimulating cardiomyocyte proliferation in the adult heart has emerged as a promising strategy for cardiac regeneration following myocardial infarction (MI). The NRG1-ERBB4 signaling pathway has been implicated in the regulation of cardiomyocyte proliferation. However, the therapeutic potential of recombinant human NRG1 (rhNRG1) has been limited due to the low expression of ERBB4 in adult cardiomyocytes. Here, we investigated whether a fusion protein of rhNRG1 and an ERBB3 inhibitor (rhNRG1-HER3i) could enhance the affinity of NRG1 for ERBB4 and promote adult cardiomyocyte proliferation. In vitro and in vivo experiments were conducted using postnatal day 1 (P1), P7, and adult cardiomyocytes. Western blot analysis was performed to assess the expression and activity of ERBB4. Cardiomyocyte proliferation was evaluated using Ki67 and pH 3 immunostaining, while fibrosis was assessed using Masson staining. Our results indicate that rhNRG1-HER3i, but not rhNRG1, promoted P7 and adult cardiomyocyte proliferation. Furthermore, rhNRG1-HER3i improved cardiac function and reduced cardiac fibrosis in post-MI hearts. Administration of rhNRG1-HER3i inhibited ERBB3 phosphorylation while increasing ERBB4 phosphorylation in adult mouse hearts. Additionally, rhNRG1-HER3i enhanced angiogenesis following MI compared to rhNRG1. In conclusion, our findings suggest that rhNRG1-HER3i is a viable therapeutic approach for promoting adult cardiomyocyte proliferation and treating MI by enhancing NRG1-ERBB4 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI