Enhancing traffic signal control with composite deep intelligence

计算机科学 强化学习 交通整形 调度(生产过程) 智能交通系统 深度学习 人工神经网络 图形 交通生成模型 人工智能 交叉口(航空) 分布式计算 网络流量控制 实时计算 理论计算机科学 计算机网络 工程类 运输工程 运营管理 网络数据包
作者
Zhongnan Zhao,Kun Wang,Yue Wang,Xiaoliang Liang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123020-123020 被引量:5
标识
DOI:10.1016/j.eswa.2023.123020
摘要

Traffic signal control has always been a hot topic in the field of intelligent transportation. With the increasing complexity of urban traffic conditions due to urbanization, how to develop effective scheduling strategies to adapt to the changing traffic demands has become a key problem in current intelligent transportation. In light of this, this paper focuses on the traffic signal control problem at intersections and proposes a composite intelligent traffic signal control model based on heterogeneous graph neural networks with dual attention mechanisms and deep reinforcement learning. For the first time, the model incorporates the dual attention mechanism in graph neural networks into the traffic signal control, integrating graph neural networks with deep reinforcement learning techniques and traffic intersection scenarios. This allows for the construction of traffic condition models and the scheduling control of traffic resources, catering to the perception and decision-making needs in complex traffic environments. Firstly, the graph relationship representation of intersection resources is established, constructing the graph information structure for traffic flow and signal states. Then, a heterogeneous graph neural network is designed, incorporating both node-level and semantic-level dual attention mechanisms to characterize the traffic state and explore the relationships, enabling the extraction of explicit and implicit information in traffic intersections. Lastly, a deep reinforcement learning algorithm that combines Double Deep Q-Network (DDQN) and Dueling DQN is implemented to improve the algorithm's generalization and execution efficiency, enhancing the adaptability and stability of traffic signal scheduling in complex environments. Simulation tests are conducted on the SUMO simulation platform using real-world application datasets. Compared to four other similar traffic control model, the proposed model demonstrates performance advantages of more than 13% in terms of average reward, average delay, queue length, and waiting time. This validates the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xixi发布了新的文献求助10
3秒前
3秒前
草原狼发布了新的文献求助10
6秒前
赘婿应助喜悦的唇膏采纳,获得10
7秒前
7秒前
包容诗翠完成签到,获得积分10
8秒前
凹凸先森完成签到 ,获得积分10
8秒前
8秒前
8秒前
limeng完成签到,获得积分20
8秒前
梦初醒处完成签到,获得积分10
10秒前
zhuguli完成签到,获得积分10
10秒前
10秒前
星辰大海应助王金铭采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得30
11秒前
慕青应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
十二发布了新的文献求助10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得30
11秒前
zhanghhsnow发布了新的文献求助20
11秒前
Akim应助科研通管家采纳,获得30
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
12秒前
大个应助科研通管家采纳,获得10
12秒前
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
kyou发布了新的文献求助10
13秒前
Gauss应助高高白曼舞采纳,获得30
14秒前
xbo完成签到,获得积分10
14秒前
哈123完成签到,获得积分10
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194