Enhancing traffic signal control with composite deep intelligence

计算机科学 强化学习 交通整形 调度(生产过程) 智能交通系统 深度学习 人工神经网络 图形 交通生成模型 人工智能 交叉口(航空) 分布式计算 网络流量控制 实时计算 理论计算机科学 计算机网络 工程类 运输工程 运营管理 网络数据包
作者
Zhongnan Zhao,Kun Wang,Yue Wang,Xiaoliang Liang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123020-123020 被引量:5
标识
DOI:10.1016/j.eswa.2023.123020
摘要

Traffic signal control has always been a hot topic in the field of intelligent transportation. With the increasing complexity of urban traffic conditions due to urbanization, how to develop effective scheduling strategies to adapt to the changing traffic demands has become a key problem in current intelligent transportation. In light of this, this paper focuses on the traffic signal control problem at intersections and proposes a composite intelligent traffic signal control model based on heterogeneous graph neural networks with dual attention mechanisms and deep reinforcement learning. For the first time, the model incorporates the dual attention mechanism in graph neural networks into the traffic signal control, integrating graph neural networks with deep reinforcement learning techniques and traffic intersection scenarios. This allows for the construction of traffic condition models and the scheduling control of traffic resources, catering to the perception and decision-making needs in complex traffic environments. Firstly, the graph relationship representation of intersection resources is established, constructing the graph information structure for traffic flow and signal states. Then, a heterogeneous graph neural network is designed, incorporating both node-level and semantic-level dual attention mechanisms to characterize the traffic state and explore the relationships, enabling the extraction of explicit and implicit information in traffic intersections. Lastly, a deep reinforcement learning algorithm that combines Double Deep Q-Network (DDQN) and Dueling DQN is implemented to improve the algorithm's generalization and execution efficiency, enhancing the adaptability and stability of traffic signal scheduling in complex environments. Simulation tests are conducted on the SUMO simulation platform using real-world application datasets. Compared to four other similar traffic control model, the proposed model demonstrates performance advantages of more than 13% in terms of average reward, average delay, queue length, and waiting time. This validates the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实谷蓝完成签到 ,获得积分10
刚刚
温悦完成签到,获得积分10
1秒前
共享精神应助Zz采纳,获得10
2秒前
冷静学姐完成签到,获得积分10
2秒前
仓鼠球发布了新的文献求助10
3秒前
刻苦代灵完成签到,获得积分20
3秒前
3秒前
小应发布了新的文献求助20
4秒前
橙果果发布了新的文献求助10
4秒前
Ryan123完成签到,获得积分10
4秒前
4秒前
4秒前
我是老大应助开放雪曼采纳,获得10
5秒前
852应助小语丝采纳,获得10
6秒前
More发布了新的文献求助10
7秒前
聪慧如波发布了新的文献求助10
7秒前
哎咿呀哎呀完成签到,获得积分10
7秒前
wanci应助di采纳,获得10
7秒前
10秒前
billevans发布了新的文献求助100
11秒前
顾矜应助活泼的牛排采纳,获得10
11秒前
从不内卷发布了新的文献求助10
14秒前
小杨完成签到 ,获得积分20
15秒前
16秒前
17秒前
小马甲应助无聊的傲蕾采纳,获得10
17秒前
19秒前
个性书翠发布了新的文献求助10
19秒前
开放雪曼完成签到,获得积分10
19秒前
斯文败类应助从不内卷采纳,获得10
19秒前
tingalan完成签到,获得积分10
19秒前
聪慧如波完成签到,获得积分10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
Starwalker应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152