量子点
材料科学
光子
纳米技术
量子
光电子学
聚集诱导发射
化学物理
化学
荧光
物理
光学
量子力学
作者
Yung‐Tang Chuang,Tzu‐Yu Lin,Guang‐Hsun Tan,Pei‐En Jan,Hao‐Cheng Lin,Hung‐Ming Chen,Kai‐Yuan Hsiao,Bo‐Han Chen,Chih‐Hsuan Lu,Chi‐Hsuan Lee,Chun‐Wei Pao,Shang‐Da Yang,Ming‐Yen Lu,Hao‐Wu Lin
出处
期刊:Small
[Wiley]
日期:2023-12-10
卷期号:20 (18)
被引量:1
标识
DOI:10.1002/smll.202308676
摘要
Abstract Highly emissive semiconductor nanocrystals, or so‐called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross‐section, high emission intensity, and, most important, nonblinking behavior at single‐dot level have long been desired and not yet realized at room temperature. In this work, infrared‐emissive MAPbI 3 ‐based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single‐dot level, display an extra‐large absorption cross‐section up to 1.80 × 10 −12 cm 2 and non‐blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in‐depth analysis indicates that neither trion formation nor band‐edge carrier trapping is observed in MAPbI 3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence‐dependent transient absorption measurements reveal that the coexistence of non‐blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton‐exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high‐resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI