FluGCF: A Fluent Dialogue Generation Model With Coherent Concept Entity Flow

计算机科学 流利 对话 词汇 自然语言处理 人工智能 判决 语言学 哲学
作者
Yu Zhao,Bo Cheng,Yunte Huang,Zhiguo Wan
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 853-867
标识
DOI:10.1109/taslp.2023.3340610
摘要

The integration of external knowledge graphs into dialogue systems effectively mitigates the generation of generic and uninteresting responses. This approach, particularly the explicit modeling of conversation flows from related concept entities, facilitates the generation of semantically rich and informative responses. However, recent models guided by concept entity flows present two primary limitations: (1) a limited semantic understanding of the post message, which complicates the selection of highly relevant 1-hop concept entities, and (2) an inability to extract dynamic and diverse semantic relations between the post message and 2-hop concept entities. To address these issues, we introduce FluGCF, a novel model that fluently generates dialogues with coherent guidance from concept entity flows. FluGCF employs a ternary fusion to explicitly model multi-hop concept entity flows using a post-aware knowledge encoding mechanism. This mechanism learns semantic concept entity features from both word and sentence-level text features. Additionally, we design a corresponding ternary decoding mechanism that dynamically selects concept entities or words from the vocabulary to enhance fluency and diversity in dialogue generation. FluGCF, implemented in PyTorch, was extensively evaluated on a large-scale dataset, revealing that it surpasses baseline models, including the state-of-the-art knowledge-aware model ConceptFlow, by nearly 15% in terms of fluency. Furthermore, it demonstrated notable enhancements in coherence, diversity and informativeness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小费发布了新的文献求助50
2秒前
锐哥发布了新的文献求助10
2秒前
孙玉杰发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
可靠的公爵熊完成签到,获得积分10
3秒前
3秒前
纯真的诗兰完成签到,获得积分10
6秒前
李爱国应助孙玉杰采纳,获得10
8秒前
Kenzonvay发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助zhan采纳,获得10
11秒前
11秒前
pluto应助小费采纳,获得50
13秒前
pluto应助小费采纳,获得50
13秒前
jiangcy完成签到,获得积分10
14秒前
yam001发布了新的文献求助10
15秒前
宋江他大表哥完成签到,获得积分10
16秒前
yam001完成签到,获得积分20
20秒前
21秒前
23秒前
大个应助ZZH采纳,获得10
24秒前
123完成签到,获得积分10
26秒前
wwt发布了新的文献求助30
26秒前
ccc发布了新的文献求助30
28秒前
11发布了新的文献求助10
29秒前
luna完成签到,获得积分10
29秒前
32秒前
研友_Z7Xvl8完成签到,获得积分10
32秒前
FashionBoy应助mashu采纳,获得10
33秒前
Akim应助失眠的平凡采纳,获得10
35秒前
36秒前
番薯圆发布了新的文献求助10
37秒前
wwt关闭了wwt文献求助
37秒前
cctv18应助独行业采纳,获得10
38秒前
Leif应助科研通管家采纳,获得10
39秒前
JoeJ应助科研通管家采纳,获得10
39秒前
Leif应助科研通管家采纳,获得10
39秒前
大模型应助科研通管家采纳,获得10
39秒前
斯文败类应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325352
求助须知:如何正确求助?哪些是违规求助? 2956011
关于积分的说明 8578845
捐赠科研通 2633929
什么是DOI,文献DOI怎么找? 1441612
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654623