对映选择合成
羟醛缩合
羟醛反应
化学
合成子
组合化学
催化作用
立体化学
有机化学
作者
Yunting Liu,Teng Ma,Zaiping Guo,Liya Zhou,Guanhua Liu,Yonghong He,Li Ma,Jing Gao,Jing Bai,Frank Hollmann,Yanjun Jiang
标识
DOI:10.1038/s41467-023-44452-z
摘要
Abstract Chemoenzymatic cascade catalysis has emerged as a revolutionary tool for streamlining traditional retrosynthetic disconnections, creating new possibilities for the asymmetric synthesis of valuable chiral compounds. Here we construct a one-pot concurrent chemoenzymatic cascade by integrating organobismuth-catalyzed aldol condensation with ene-reductase (ER)-catalyzed enantioselective reduction, enabling the formal asymmetric α-benzylation of cyclic ketones. To achieve this, we develop a pair of enantiocomplementary ERs capable of reducing α-arylidene cyclic ketones, lactams, and lactones. Our engineered mutants exhibit significantly higher activity, up to 37-fold, and broader substrate specificity compared to the parent enzyme. The key to success is due to the well-tuned hydride attack distance/angle and, more importantly, to the synergistic proton-delivery triade of Tyr28-Tyr69-Tyr169. Molecular docking and density functional theory (DFT) studies provide important insights into the bioreduction mechanisms. Furthermore, we demonstrate the synthetic utility of the best mutants in the asymmetric synthesis of several key chiral synthons.
科研通智能强力驱动
Strongly Powered by AbleSci AI