共价有机骨架
纳米复合材料
电化学气体传感器
共价键
结晶度
电化学
检出限
碳纳米管
化学工程
材料科学
双金属片
催化作用
化学
纳米技术
有机化学
电极
色谱法
复合材料
物理化学
工程类
作者
Hao Guo,Zeyun Yang,Lei Sun,Zongyan Lu,Xiaoqin Wei,Mingyue Wang,Zhiguo Yu,Wu Yang
标识
DOI:10.1016/j.jcis.2023.12.180
摘要
In this work, a covalent organic framework (TADM-COF) with high crystallinity and large specific surface area (2597 m2 g−1) has been successfully synthesized using 1,3,5-(4-aminophenyl) benzene (TAPB) and 2,5-dimethoxy-p-phenyldiformaldehyde (DMTP). The COF was grown in situ on oxide particles to form core–shell nanocomposites (SiO2@TADM COF, Fe3O4@TADM COF and Co3O4@TADM COF) to realize its function as a shell material. Among them, the Co3O4@TADM COF with the highest electrochemical response to purine bases was further cross-linked with multi-walled carbon nanotubes (MWCNT) to construct a novel electrochemical sensor (Co3O4@TADM COF/MWCNT/GCE) for detection of purine bases. In this nanocomposite, Co3O4 possesses rich catalytic active sites, MWCNT ensures superior electrical conductivity and COF provides a stable environment for electrocatalytic reactions as the shell. At the same time, regular pore structure of the COFs also offers smooth channels for the transfer of analytes to the catalytic site. The synergistic effect among the three components showed remarkable sensing performance for the simultaneous detection of guanine (G) and adenine (A) with a wide linear range of 0.6–180 μM and low limits of detection (LODs) of 0.020 μM for G and 0.024 μM for A (S/N = 3), respectively. The developed sensor platform was also successfully applied in the detection of purine bases in thermally denatured herring DNA extract. The work provided a general strategy for amplifying signal of COF and its composite in the electrochemical sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI