亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance analysis of genetically optimized 1D-convolutional neural network architecture for rotor system fault detection and diagnosis

卷积神经网络 断层(地质) 转子(电动) 建筑 计算机科学 人工智能 故障检测与隔离 模式识别(心理学) 工程类 生物 地理 电气工程 古生物学 考古 执行机构
作者
Sudhar Rajagopalan,Jaskaran Singh,Ashish Purohit
标识
DOI:10.1177/09544089241235707
摘要

Rotor mass imbalance is a critical problem in industries, which can lead to a breakdown or a catastrophic failure if unattended. Hence, Industry 4.0 uses deep learning approaches like convolutional neural network (CNN) for rotor fault detection and diagnosis of Industrial machines and turbomachinery where multifunctional structures are used. In machinery fault diagnosis, manual tuning of CNN hyperparameters is widely used, which is a tedious, time-consuming, and challenging task to achieve effective feature extraction. Additionally, overfitting of CNN during its training is an obstacle to achieving higher prediction accuracy. Hence, to address these issues, this research focuses on multi-class mass imbalance fault diagnosis using genetically optimized deep learning architecture of 1D-CNN to achieve higher diagnosis capability. The performance of the proposed methodology is evaluated through various case studies using experimental data from the in-house developed test rig. The test results are compared against various 1D-CNN architectures in which the hyperparameters and effective dropout layer positioning are genetically optimized. Also, the performance is benchmarked against standard machine learning algorithms. The results show that genetic algorithm (GA)-optimized 1D-CNN with dropout achieves highest fault prediction accuracy of 97.47% with reduced depth of CNN (with three convolution layers) compared to 84.16% of manually tunned CNN architecture (with seven convolutional layers) and outperformed standard machine learning algorithms. Best drop positioning (end of feature extraction part) reduced the learnable parameters to 95.9% with the highest prediction accuracy of 97.47% compared to adding dropout at all the CNN layers. The proposed GA-optimized 1D-CNN with effective dropout positioning eliminates human intervention and reduces the depth of CNN architecture; this, in turn, reduces computational load and time by reducing learnable parameters of CNN (network weights) with the highest prediction accuracy. Hence, the proposed approach shows promise in enhancing the performance and contributing to the advancement of 1D-CNN for rotor system fault detection and diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
东方宏应助科研通管家采纳,获得60
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
稻子完成签到 ,获得积分10
34秒前
福明明完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
科研通AI2S应助东东采纳,获得10
1分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
2分钟前
伏城完成签到 ,获得积分10
2分钟前
shirley完成签到,获得积分10
3分钟前
Mason完成签到,获得积分10
3分钟前
ff999完成签到,获得积分10
3分钟前
aXing~~完成签到,获得积分10
3分钟前
onesail完成签到 ,获得积分10
4分钟前
月军完成签到,获得积分10
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
调研昵称发布了新的文献求助20
4分钟前
黎明的第一道曙光完成签到 ,获得积分10
4分钟前
烟花应助皮皮的鹿采纳,获得10
5分钟前
5分钟前
5分钟前
皮皮的鹿发布了新的文献求助10
5分钟前
皮皮的鹿完成签到,获得积分10
5分钟前
5分钟前
田様应助欣慰宛筠采纳,获得10
6分钟前
steven完成签到 ,获得积分10
6分钟前
情怀应助科研通管家采纳,获得30
6分钟前
爱静静应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330407
求助须知:如何正确求助?哪些是违规求助? 2960038
关于积分的说明 8598137
捐赠科研通 2638625
什么是DOI,文献DOI怎么找? 1444488
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656754