已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance analysis of genetically optimized 1D-convolutional neural network architecture for rotor system fault detection and diagnosis

卷积神经网络 断层(地质) 转子(电动) 建筑 计算机科学 人工智能 故障检测与隔离 模式识别(心理学) 工程类 生物 地理 电气工程 古生物学 考古 执行机构
作者
Sudhar Rajagopalan,Jaskaran Singh,Ashish Purohit
出处
标识
DOI:10.1177/09544089241235707
摘要

Rotor mass imbalance is a critical problem in industries, which can lead to a breakdown or a catastrophic failure if unattended. Hence, Industry 4.0 uses deep learning approaches like convolutional neural network (CNN) for rotor fault detection and diagnosis of Industrial machines and turbomachinery where multifunctional structures are used. In machinery fault diagnosis, manual tuning of CNN hyperparameters is widely used, which is a tedious, time-consuming, and challenging task to achieve effective feature extraction. Additionally, overfitting of CNN during its training is an obstacle to achieving higher prediction accuracy. Hence, to address these issues, this research focuses on multi-class mass imbalance fault diagnosis using genetically optimized deep learning architecture of 1D-CNN to achieve higher diagnosis capability. The performance of the proposed methodology is evaluated through various case studies using experimental data from the in-house developed test rig. The test results are compared against various 1D-CNN architectures in which the hyperparameters and effective dropout layer positioning are genetically optimized. Also, the performance is benchmarked against standard machine learning algorithms. The results show that genetic algorithm (GA)-optimized 1D-CNN with dropout achieves highest fault prediction accuracy of 97.47% with reduced depth of CNN (with three convolution layers) compared to 84.16% of manually tunned CNN architecture (with seven convolutional layers) and outperformed standard machine learning algorithms. Best drop positioning (end of feature extraction part) reduced the learnable parameters to 95.9% with the highest prediction accuracy of 97.47% compared to adding dropout at all the CNN layers. The proposed GA-optimized 1D-CNN with effective dropout positioning eliminates human intervention and reduces the depth of CNN architecture; this, in turn, reduces computational load and time by reducing learnable parameters of CNN (network weights) with the highest prediction accuracy. Hence, the proposed approach shows promise in enhancing the performance and contributing to the advancement of 1D-CNN for rotor system fault detection and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助木讷山采纳,获得10
1秒前
无花果应助HS采纳,获得10
1秒前
梓里楠木发布了新的文献求助10
2秒前
3秒前
3秒前
友好不愁完成签到,获得积分10
7秒前
7秒前
8秒前
研友_LJpvdZ发布了新的文献求助10
8秒前
8秒前
10秒前
梓涵完成签到,获得积分10
10秒前
zty123发布了新的文献求助10
11秒前
肩膀发芽完成签到,获得积分10
11秒前
hyhyhyhy发布了新的文献求助10
13秒前
难过的疾发布了新的文献求助10
13秒前
桃源theshy完成签到,获得积分20
14秒前
小夭发布了新的文献求助10
15秒前
wen发布了新的文献求助10
15秒前
16秒前
薛薛完成签到,获得积分10
17秒前
离枝完成签到 ,获得积分10
19秒前
Hello应助hyhyhyhy采纳,获得10
19秒前
辉哥发布了新的文献求助10
20秒前
Ping发布了新的文献求助50
20秒前
综述王完成签到 ,获得积分20
21秒前
田様应助难过的疾采纳,获得10
21秒前
22秒前
Hello应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980484
求助须知:如何正确求助?哪些是违规求助? 3524440
关于积分的说明 11221506
捐赠科研通 3261890
什么是DOI,文献DOI怎么找? 1800932
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283