Performance analysis of genetically optimized 1D-convolutional neural network architecture for rotor system fault detection and diagnosis

卷积神经网络 断层(地质) 转子(电动) 建筑 计算机科学 人工智能 故障检测与隔离 模式识别(心理学) 工程类 生物 地理 电气工程 古生物学 考古 执行机构
作者
Sudhar Rajagopalan,Jaskaran Singh,Ashish Purohit
标识
DOI:10.1177/09544089241235707
摘要

Rotor mass imbalance is a critical problem in industries, which can lead to a breakdown or a catastrophic failure if unattended. Hence, Industry 4.0 uses deep learning approaches like convolutional neural network (CNN) for rotor fault detection and diagnosis of Industrial machines and turbomachinery where multifunctional structures are used. In machinery fault diagnosis, manual tuning of CNN hyperparameters is widely used, which is a tedious, time-consuming, and challenging task to achieve effective feature extraction. Additionally, overfitting of CNN during its training is an obstacle to achieving higher prediction accuracy. Hence, to address these issues, this research focuses on multi-class mass imbalance fault diagnosis using genetically optimized deep learning architecture of 1D-CNN to achieve higher diagnosis capability. The performance of the proposed methodology is evaluated through various case studies using experimental data from the in-house developed test rig. The test results are compared against various 1D-CNN architectures in which the hyperparameters and effective dropout layer positioning are genetically optimized. Also, the performance is benchmarked against standard machine learning algorithms. The results show that genetic algorithm (GA)-optimized 1D-CNN with dropout achieves highest fault prediction accuracy of 97.47% with reduced depth of CNN (with three convolution layers) compared to 84.16% of manually tunned CNN architecture (with seven convolutional layers) and outperformed standard machine learning algorithms. Best drop positioning (end of feature extraction part) reduced the learnable parameters to 95.9% with the highest prediction accuracy of 97.47% compared to adding dropout at all the CNN layers. The proposed GA-optimized 1D-CNN with effective dropout positioning eliminates human intervention and reduces the depth of CNN architecture; this, in turn, reduces computational load and time by reducing learnable parameters of CNN (network weights) with the highest prediction accuracy. Hence, the proposed approach shows promise in enhancing the performance and contributing to the advancement of 1D-CNN for rotor system fault detection and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
刚刚
苹果萧发布了新的文献求助10
1秒前
zhihan发布了新的文献求助10
2秒前
Hao发布了新的文献求助10
2秒前
2秒前
Orange应助贾不可采纳,获得10
2秒前
李健的小迷弟应助贾不可采纳,获得10
2秒前
FashionBoy应助贾不可采纳,获得10
2秒前
奋斗的夜山完成签到 ,获得积分10
2秒前
yana发布了新的文献求助20
2秒前
yijiubingshi完成签到,获得积分10
3秒前
苏南完成签到 ,获得积分10
3秒前
冰激凌UP发布了新的文献求助10
3秒前
SCI发布了新的文献求助10
3秒前
CD发布了新的文献求助10
3秒前
4秒前
yan123发布了新的文献求助10
5秒前
5秒前
充电宝应助yyj采纳,获得10
5秒前
马静雨发布了新的文献求助10
5秒前
云游归尘发布了新的文献求助10
6秒前
7秒前
111发布了新的文献求助10
7秒前
寰宇完成签到,获得积分10
7秒前
7秒前
8秒前
花田雨桐发布了新的文献求助10
8秒前
8秒前
小马甲应助lieditongxu采纳,获得10
8秒前
Jenny应助yan123采纳,获得10
9秒前
狂野的以珊完成签到,获得积分10
9秒前
9秒前
a1oft发布了新的文献求助10
10秒前
10秒前
10秒前
笨笨的不斜完成签到,获得积分10
10秒前
xtqgyy发布了新的文献求助10
10秒前
11秒前
Cat完成签到,获得积分0
11秒前
科研小菜完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794