Dyslipidemia versus obesity as predictors of ischemic stroke prognosis: a multi-center study in China

医学 血脂异常 内科学 体质指数 优势比 冲程(发动机) 置信区间 队列研究 脂多糖学 倾向得分匹配 肥胖 前瞻性队列研究 队列 临床营养学 胆固醇 工程类 机械工程
作者
Hang Ruan,Xiao Ran,Shusheng Li,Qin Zhang
出处
期刊:Lipids in Health and Disease [Springer Nature]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12944-024-02061-9
摘要

Abstract Background This multicenter observational study aimed to determine whether dyslipidemia or obesity contributes more significantly to unfavorable clinical outcomes in patients experiencing a first-ever ischemic stroke (IS). Methods The study employed a machine learning predictive model to investigate associations among body mass index (BMI), body fat percentage (BFP), high-density lipoprotein (HDL), triglycerides (TG), and total cholesterol (TC) with adverse outcomes in IS patients. Extensive real-world clinical data was utilized, and risk factors significantly linked to adverse outcomes were identified through multivariate analysis, propensity score matching (PSM), and regression discontinuity design (RDD) techniques. Furthermore, these findings were validated via a nationwide multicenter prospective cohort study. Results In the derived cohort, a total of 45,162 patients diagnosed with IS were assessed, with 522 experiencing adverse outcomes. A multifactorial analysis incorporating PSM and RDD methods identified TG (adjusted odds ratio (OR) = 1.110; 95% confidence interval (CI): 1.041–1.183; P < 0.01) and TC (adjusted OR = 1.139; 95%CI: 1.039–1.248; P < 0.01) as risk factors. However, BMI, BFP, and HDL showed no significant effect. In the validation cohort, 1410 controls and 941 patients were enrolled, confirming that lipid levels are more strongly correlated with the prognosis of IS patients compared to obesity (TC, OR = 1.369; 95%CI: 1.069–1.754; P < 0.05; TG, OR = 1.332; 95%CI: 1.097–1.618; P < 0.01). Conclusion This study suggests that dyslipidemia has a more substantial impact on the prognosis of IS patients compared to obesity. This highlights the importance of prioritizing dyslipidemia management in the treatment and prevention of adverse outcomes in IS patients. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诚心谷南完成签到,获得积分10
1秒前
健忘煎蛋发布了新的文献求助10
1秒前
不是一个名字完成签到,获得积分10
1秒前
科研通AI2S应助April采纳,获得10
2秒前
万能图书馆应助香蕉寒梅采纳,获得10
2秒前
3秒前
lz完成签到,获得积分10
3秒前
3秒前
33333完成签到,获得积分10
4秒前
LWJ完成签到 ,获得积分10
4秒前
JasVe完成签到 ,获得积分10
4秒前
Carrer完成签到,获得积分10
4秒前
赘婿应助宗友绿采纳,获得10
5秒前
5秒前
三伏天发布了新的文献求助10
5秒前
gzgljh完成签到,获得积分10
5秒前
海上聆风发布了新的文献求助10
6秒前
ylw完成签到,获得积分20
6秒前
6秒前
糖糖发布了新的文献求助20
6秒前
13123完成签到,获得积分20
6秒前
April完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
淡淡de橙子完成签到,获得积分10
8秒前
沉默的婴完成签到 ,获得积分10
9秒前
DD完成签到,获得积分10
9秒前
万能图书馆应助YY采纳,获得10
9秒前
nicole完成签到 ,获得积分20
9秒前
xclllyl关注了科研通微信公众号
9秒前
周志昂发布了新的文献求助10
10秒前
黎芽儿完成签到,获得积分10
10秒前
10秒前
YT完成签到,获得积分10
10秒前
saxg_hu完成签到,获得积分10
10秒前
julia应助13123采纳,获得10
10秒前
Zetlynn完成签到,获得积分10
11秒前
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471775
求助须知:如何正确求助?哪些是违规求助? 3064667
关于积分的说明 9089490
捐赠科研通 2755350
什么是DOI,文献DOI怎么找? 1511987
邀请新用户注册赠送积分活动 698629
科研通“疑难数据库(出版商)”最低求助积分说明 698517